
Enforcement Heuristics for Argumentation with Deep Reinforcement Learning

Dennis Craandijk1,2 and Floris Bex2,3

1 National Police-lab AI, Netherlands Police
2 Department Information and Computing Sciences, Utrecht University
3 Tilburg Institute for Law, Technology and Society, Tilburg University

{d.f.w.craandijk, f.j.bex}@uu.nl

Abstract
In this paper, we present a learning-based approach to
the symbolic reasoning problem of dynamic argumentation,
where the knowledge about attacks between arguments is
incomplete or evolving. Specifically, we employ deep rein-
forcement learning to learn which attack relations between
arguments should be added or deleted in order to enforce the
acceptability of (a set of) arguments. We show that our Graph
Neural Network (GNN) architecture EGNN can learn a near
optimal enforcement heuristic for all common argument-
fixed enforcement problems, including problems for which
no other (symbolic) solvers exist. We demonstrate that EGNN
outperforms other GNN baselines and on enforcement prob-
lems with high computational complexity performs better
than state-of-the-art symbolic solvers with respect to effi-
ciency. Thus, we show our neuro-symbolic approach is able
to learn heuristics without the expert knowledge of a human
designer and offers a valid alternative to symbolic solvers. We
publish our code at https://github.com/DennisCraandijk/DL-
Abstract-Argumentation.

1 Introduction
Recent years have seen rapid developments in neuro-
symbolic computing, which aim to put together learning in
(deep) neural networks with reasoning and explainability
via symbolic representations (d’Avila Garcez et al. 2019).
A growing body of literature in this field combines deep
learning with reinforcement learning to automatically learn
heuristics for symbolic reasoning problems (such as game
playing (Silver et al. 2018) and combinatorial optimiza-
tion (Bengio, Lodi, and Prouvost 2021)). The appeal of this
deep reinforcement learning paradigm is that solvers can be
learned end-to-end without the tailoring and expert knowl-
edge of a human designer.

One domain where learning based methods are a promis-
ing alternative for symbolic methods is computational ar-
gumentation. With applications in multi-agent systems,
decision-making tools, medical and legal reasoning, com-
putational argumentation has become a major subfield of
AI (Atkinson et al. 2017). The foundation of much of the
theory of computational argumentation is based on the sem-
inal work by Dung (1995), who introduced abstract argu-
mentation frameworks (AFs) - representing arguments and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attacks between these arguments - and several acceptability
semantics that define which sets of arguments (extensions)
can be reasonably accepted. Recent work demonstrates the
use of a graph neural network (GNN) to learn to determine
which arguments are (part of) an extension (Kuhlmann and
Thimm 2019; Craandijk and Bex 2020; Malmqvist et al.
2020) - computational problems which are normally solved
with handcrafted symbolic methods (Charwat et al. 2015;
Gaggl et al. 2020). These approaches however, learn by su-
pervision of an existing solver used to generate the training
data, rather than end-to-end.

In this work we employ a graph-based deep reinforcement
learning algorithm on the dynamic argumentation problem
of enforcement (Baumann and Brewka 2010): given sets of
arguments that we (do not) want to accept, how to modify
the argumentation framework in such a way that these argu-
ments are (not) accepted, while minimizing the number of
changes (Baumann 2012). Here, it is possible to distinguish
between extension enforcement – modifying an argumenta-
tion framework in such a way that a given set of arguments
becomes an extension (Baumann and Brewka 2010) – and
status enforcement (Niskanen, Wallner, and Järvisalo 2016)
– modifying an argumentation framework in such a way that
the arguments in one set become accepted while at the same
time the arguments in another set are not accepted.

While there has been ample formal work on enforcement
and its complexity (Doutre and Mailly 2018; Wallner, Niska-
nen, and Järvisalo 2017), only a few automated solvers cur-
rently exist, which all translate the problem into a symbolic
formalism for which a dedicated solver exists. In contrast to
solvers for static argumentation (i.e. determining acceptabil-
ity or extensions under various semantics), for which there
is a lively community (Gaggl et al. 2020), there is less work
on solvers for dynamic enforcement problems, with enforce-
ment not being part of the ICCMA competitions1. Existing
algorithms on extension and status enforcement have been
published by Coste-Marquis et al. (2015); Wallner, Niska-
nen, and Järvisalo (2017); Niskanen, Wallner, and Järvisalo
(2016); Niskanen, Wallner, and Järvisalo (2018); Niskanen
and Järvisalo (2020b) who only tackle some variants of sta-
tus enforcement. Furthermore, we have found that existing
symbolic solvers demonstrate a quite significant drop in run-

1See argumentationcompetition.org and (Gaggl et al. 2020)

a b

c

d

Figure 1: Graph representation of the AF Fe.

time efficiency when confronted with some of the enforce-
ment problems that are higher in the complexity hierarchy,
which severely limits their practical applicability. So there
is a need for efficient heuristics to tackle these problems.
However, designing such heuristics takes considerable effort
and domain knowledge on the part of an expert, who gener-
ally has to come up with a new heuristic for every type of
problem or semantics. As far as we are aware, there exist no
heuristics for enforcement problems.

In this paper, we therefore show that it is possible to
learn an enforcement heuristic for all extension and status
enforcement problems under the most common semantics
with only a single architecture. We compare our Enforce-
ment Graph Neural Network (EGNN) to symbolic solvers
and two other deep learning models based on recent work in
deep learning for argumentation (Craandijk and Bex 2020;
Kuhlmann and Thimm 2019; Malmqvist et al. 2020), show-
ing that EGNN often outperforms these baselines on effi-
ciency (solutions found within a time limit) while staying
very close to the symbolic solvers in terms of optimality
(steps taken to find a solution). We employ a deep reinforce-
ment learning approach that automatically learns to generate
solutions that only need to be verified. Such verification is a
static argumentation problem for which there are many ex-
isting algorithms, thus allowing us to also learn heuristics
for dynamic enforcement problems for which no symbolic
solvers yet exist.

We start by discussing argumentation and enforcement
preliminaries in Section 2. Section 3 then sets up enforce-
ment in dynamic argumentation as a reinforcement learn-
ing problem, and Section 4 discusses our Deep Q Network
(DQN) model based on a Graph Neural Network (GNN).
Section 5 discusses the experimental setup (data, training pa-
rameters), and Section 6 discusses the results. We end with
a conclusion in Section 7.

2 Preliminaries
Argumentation Frameworks
We recall abstract argumentation frameworks (Dung 1995).

Definition 1. An abstract argumentation framework (AF) is
a pair F = (A,R) where A is a (finite) set of arguments and
R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. A set S ⊆ A attacks b if there is an a ∈ S,
such that (a, b) ∈ R. An argument a ∈ A is defended by
S ⊆ A iff, for each b ∈ A such that (b, a) ∈ R, S attacks b.

Example 1. Figure 1 illustrates the AF Fe =
({a, b, c, d}, {(a, b), (b, c)(b, d), (c, d), (d, c)}).

Dung-style semantics define the sets of arguments that
can jointly be accepted (extensions). A σ-extension refers
to an extension under semantics σ. We consider admissible
sets and preferred, complete, grounded and stable semantics
with the following functions respectively adm, prf, com,
grd, stb.
Definition 2. Let F = (A,R) be an AF. A set S ⊆ A
is conflict-free (in F), if there are no a, b ∈ S, such that
(a, b) ∈ R. The collection of sets which are conflict-free is
denoted by cf(F). For S ∈ cf(F), it holds that:

• S ∈ adm(F), if each a ∈ S is defended by S;
• S ∈ prf(F), if S ∈ adm(F) and for each T ∈ adm(F),
S 6⊂ T ;

• S ∈ com(F), if S ∈ adm(F) and for each a ∈ A
defended by S it holds that a ∈ S;

• S ∈ grd(F), if S ∈ com(F) and for each T ∈ com(F),
T 6⊂ S;

• S ∈ stb(F), if for each a ∈ A \ S, S attacks a.

Example 2. The extensions of Fe under the preferred,
complete and grounded semantics are: prf(F) =
{{a, c}, {a, d}}; com(F) = {{a}, {a, c}, {a, d}};
grd(F) = {a}; stb(F) = {{a, c}, {a, d}}.

Given an AF, we can thus determine all σ-extensions of
some AF F (enumeration), or verify whether a given set S
is a σ-extension of F (verification), the latter being denoted
by Verσ(S, F).

Furthermore, for some argument a that is part of F , we
can determine if it is credulously accepted under semantics
σ – a is contained in at least one σ-extension – or sceptically
accepted under σ – a is contained in all σ-extensions.
Example 3. Under the preferred semantics, only argument
a is sceptically accepted and arguments a, c and d are cred-
ulously accepted in Fe.

Enforcement
Extension Enforcement Extension enforcement concerns
modifying an argumentation framework in such a way that
a given set of arguments S becomes an extension (Bau-
mann and Brewka 2010). Enforcing an extension can be
accomplished by changing the attack structure, the argu-
ments in an AF, the evaluation semantics or a combination of
those (Doutre and Mailly 2018). Since under some change
operators it is impossible to enforce an extension, Coste-
Marquis et al. (2015) constrained the problem to argument-
fixed extension enforcement, where arguments and seman-
tics are fixed and only the attack relations are subject to
change. Changing the attack structure while fixing the ar-
guments and semantics can be relevant in situations where
information about the attack structure is not complete (the
existence or direction of an attack may be unknown for in-
stance). As argument-fixed extension enforcement problems
are guaranteed to have a solution - making solvers easier to
verify - this approach is adopted in this research. Finally,
a distinction is made between a strict setting where an AF
should be modified such that S becomes an extension or the
non-strict setting where it suffices that S is a subset of an
extension.

a b

c

d

Figure 2: Changing the AF Fe from Figure 1 into AF F ′e by
removing the attack (a, b).

Definition 3. Given an AF F = (A,R), a semantics σ and
a set of arguments S ⊆ A. The goal is to change the attack
structure R into R′ such that for strict enforcement, S be-
comes an extension under semantics σ in the modified AF
F ′ = (A,R′). Strictσ(S, F) is then the set

• {R′ | F ′ = (A,R′), S ∈ σ(F ′)}
For non-strict enforcement, S should become a subset
of an extension in the modified AF F ′ = (A,R′).
Non− strictσ(S, F) is then the set

• {R′ | F ′ = (A,R′),∃S′ ∈ σ(F ′) : S ⊆ S′}

Example 4. Consider enforcing {b} in the argumentation
framework Fe from example 1. Under complete, grounded,
preferred and stable semantics {b} can be non-strictly en-
forced by removing the attack (a, b) as shown in Figure 2,
as after removal we have com(F ′e) = prf(F ′e) = grd(F ′e) =
stb(F ′e) = {{a, b}}.

Note that Non− strictadm = Non− strictcom =
Non− strictprf (Wallner, Niskanen, and Järvisalo 2017, The-
orem 1).

Status Enforcement Status enforcement (Niskanen, Wall-
ner, and Järvisalo 2016) concerns modifying an argumenta-
tion framework in such a way that every argument in a pos-
itive set P becomes (sceptically/credulously) accepted, and
at the same time every argument in a negative set N be-
comes not (sceptically/credulously) accepted. Thus, it con-
nects static argumentation (credulous/sceptical acceptance)
and dynamic argumentation (extension enforcement) – for
example, enforcing P to be (a subset of) an extension of
some AF F ′ also leads to F ′ enforcing positive credulous
acceptance for the arguments in P .

Definition 4. Given an AF F = (A,R), a semantics σ, sets
of arguments P ⊆ A and N ⊆ A, where P ∩ N = ∅.
The goal is to change the attack structure R into R′ such
that for credulous status enforcement Cred under semantics
σ in the modified AF F ′ = (A,R′), each argument in P is
credulously accepted (in at least one σ-extension) and each
argument in N is not credulously accepted (not in any σ-
extension). Credσ(P,N, F) is then the set

• {R′ | F ′ = (A,R′), P ⊆
⋃
σ(F ′), N ∩

⋃
σ(F ′) = ∅}

For sceptical status enforcement Scept, each argument in
P should be sceptically accepted (in all σ-extensions) and
each argument in N should not be sceptically accepted (ex-
cluded from at least one σ-extension) in the modified AF
F ′ = (A,R′). Sceptσ(P,N, F) is then the set

• {R′ | F ′ = (A,R′), P ⊆
⋂
σ(F ′), N ∩

⋂
σ(F ′) = ∅}

Example 5. Consider argument enforcement in the AF Fe
from Figure 1 (extensions in Example 2), with P = {b} and
N = {c, d}. Under complete, preferred, grounded and sta-
ble semantics, these arguments can be enforced credulously
and sceptically by removing the attack (a, b) (Figure 2), as
after removal we have com(F ′e) = prf(F ′e) = grd(F ′e) =
stb(F ′e) = {{a, b}}.

Note that Credadm = Credcom = Credprf and Credgrd =
Sceptgrd = Sceptcom (Niskanen, Wallner, and Järvisalo
2016, Proposition 6).

Minimal change Since one generally wants to avoid end-
lessly adding or removing elements in order to enforce
the acceptability status of arguments, enforcement is mod-
elled as an optimization problem where the goal is to en-
force arguments while minimizing the amount of change to
the framework (Baumann 2012). The number of changes
in argument-fixed extension enforcement is defined by the
Hamming distance between two attack structures.

|R∆R′| = |R \R′|+ |R′ \R|
The problem thus becomes enforcing arguments by chang-
ing the attack structure while minimizing the Hamming dis-
tance between the original and modified attack structures.

Algorithms and complexity
Wallner, Niskanen, and Järvisalo (2017) and Niskanen,
Wallner, and Järvisalo (2016) study the computational
complexity of argument-fixed extension and argument en-
forcement, respectively. Like many argumentation problems
(static and dynamic), the complexity of the extension en-
forcement problem quickly becomes quite complex. For
nearly all extension enforcement problems and semantics,
the complexity is NP-complete, with Strictprf and nearly all
status enforcement problems making a further jump in com-
plexity to ΣP2 . The hardest problem is Sceptprf at ΣP3 . These
different levels of complexity will become clearly visible in
our experiments (Section 6).

To the best of our knowledge only Coste-Marquis et al.
(2015) and Wallner, Niskanen, and Järvisalo (2017) pro-
vide algorithms for solving argument-fixed extension en-
forcement problems. These reduction-based approaches first
reduce the problem to a formula in propositional logic to
benefit from existing dedicated Boolean satisfiability (SAT)
solvers. For instance, Wallner, Niskanen, and Järvisalo
(2017) use a maximum satisfiability solver (MaxSAT) in or-
der to find an optimal solution for extension enforcement
under various semantics. Wallner, Niskanen, and Järvisalo
(2017) implement the algorithms in the Pakota and Maadoita
software2, which support optimal extension enforcement,
both strictly and non-strictly, under all current semantics.

Niskanen, Wallner, and Järvisalo (2016) further provide
status enforcement algorithms in Pakota for optimal credu-
lous and sceptical enforcement under stable and admissible
semantics (the latter of which is also a solution to Credcom
and Credprf, see Section 2). For Sceptcom (equal to Sceptgrd

2https://www.cs.helsinki.fi/group/coreo/pakota/

and Credgrd), see Section 2) and Sceptprf, there are as far as
we are aware no (symbolic) solvers currently available.

When learning new heuristics for enforcement problems,
we need at the very least be able to verify whether an ex-
tension or argument is enforced, as a reinforcement learning
algorithm needs to know whether a terminal state (in which
some set of arguments is enforced) is reached. Luckily, for
verifying the acceptability status of (a set of) arguments nu-
merous algorithms already exist (Gaggl et al. 2020; Dvorák
and Dunne 2017). Furthermore, verifying acceptance is in
many cases less computationally complex than enforcing ac-
ceptance (Charwat et al. 2015).

3 Reinforcement Learning
Unlike supervised machine learning, reinforcement learning
(RL) does not rely on labelled training data. Rather, RL con-
siders an agent that explores an environment by taking ac-
tions and aims to learn a policy that maximizes the received
cumulative reward (indicating how well it achieved its goal).
Applying this to enforcement, we consider an argumentation
framework as the environment in which an agent is rewarded
for enforcing a set of arguments by introducing or removing
attacks between arguments (i.e. flipping an attack relation).

RL problems are typically modelled as a Markov Decision
Process (MDP). Thus, more formally, we define the MDP
for enforcement as the tuple (St,Ac, Tr,Re), where given
an AF F = (A,R), a semantics σ and a set of arguments
to be enforced S ⊆ A (where for status enforcement S =
P ∪N).

• St denotes the set of states where each state s ∈ St rep-
resents (a modification of) the AF F . The initial state
s0 ∈ St consists of the original AF F . A terminal state
ŝ ∈ St consists of a modified F ′ where S is enforced.

• Ac denotes the action space, consisting of all possible
attack relations A×A.

• Tr : St×Ac −→ St denotes the transition function, map-
ping a state-action pair to the next state. The transition
function takes the current state s ∈ St with AF F and
flips the attack relation a ∈ Ac to produce the new state
s′ ∈ St with the modified AF F ′.

• Re : St −→ {0,−1} is the reward function where the
reward r is 0 for reaching a terminal state and −1 other-
wise.

Given a state s ∈ St an agent performs an action a ∈ Ac
that produces a transition to the next state s′ ∈ St and pro-
vides the agent with a reward r. The goal is to find a policy
π : St −→ Ac, describing the probability of taking an action
from a given state, that maximizes the cumulative reward at
the end of an episode. Our MDP formulation of enforcement
encourages the agent first to find a solution (to receive a non-
negative reward), and only then to minimize the number of
changes made to the AF (to maximize the reward). Addi-
tionally, our reward function only requires verifying when a
terminal stage is reached (i.e. verifying the acceptance status
of the arguments which are to be enforced).

Deep Q-Learning
Traditionally, RL problems are solved with tabular methods
such as Q-learning, where a Q-table (a look-up table con-
sisting of all possible combinations of states and actions) is
iteratively updated with Q-values reflecting the goodness of
each action given a state (Sutton and Barto 1998). The Q-
value of a state-action pair (s ∈ St, a ∈ Ac) is given by the
expected discounted sum of rewards

Qπ(s, a) = E[

∞∑
t=0

γtR(st)|s0 = s, a0 = a, π] (1)

where γ = [0, 1] denotes the discount factor and each ac-
tion is chosen according to the current policy π. Although
Q-learning can discover an optimal policy for any given
MDP, for computationally complex problems such as en-
forcement, constructing the Q-table becomes intractable due
to the large state-action space. Moreover, a policy based on
Q-tables can only handle previously seen states and there-
fore does not generalize to new problem instances. To over-
come these problems a Deep Q-network (DQN) (Mnih et al.
2015) replaces the look-up table with a neural network
that learns to predict the Q-values for any given state. The
learned Q-value function is used to guide a greedy policy
π(s) = argmaxaQ(s, a), yielding an approximation of the
optimal policy.

4 Model
We propose our enforcement model, which uses a GNN to
learn a Q-value function for our MDP formulation of en-
forcement problems. Our model takes an AF and maps it to
a fully connected graph where nodes and edges have a vecto-
rial representation denoting which nodes represent an argu-
ment that should be enforced and which edges represent an
existing attack relation. Next, the node vectors are iteratively
updated by exchanging vectorial messages with their neigh-
bours in a process called message passing. After a number
of message passing steps the node and edge representations
are mapped to the predicted Q-value for each edge.

Formally, let G = (V,E) be a directed and fully con-
nected graph representation of an AF F , where at message
passing step t = 0 each node i is assigned a real-valued vec-
tor vti ∈ V indicating whether it represents an argument that
should be enforced, and each edge between a node i and j
is assigned a real-valued vector eij ∈ E indicating whether
it represents an existing attack. At subsequent steps t, each
node i aggregates messages mt

ij from its neighbours j and
updates its vector representation, such that

mt+1
ij =MSG(vti , v

t
j , eij , eji) (2)

vt+1
i =UPDT(vti , v

0
i ,AGGR

j∈N(i)
(mt+1

ij)) (3)

where N(i) denotes all neighbours of node i. The mes-
sage function MSG computes a messages based on the vec-
tors of two connected nodes, along with the edge represen-
tations of both directed edges which mark the existence of
a (counter-)attack. The update function UPDT updates the

node representation by taking the previous node vector, the
initial node vector and the messages aggregated by AGGR.
The message and update functions are parameterized neural
networks which, in conjunction with the aggregation func-
tion, yield a neural message passing algorithm whose param-
eters can be tuned to solve various enforcement problems.

After each message passing step, an edge can be read out
with the readout function

Qtij = READ(vti , v
t
j , eij) (4)

that maps the updated node representation and the edge
representation to the predicted Q-value for that edge. The
readout function is also a parameterized function devised to
map the multidimensional representations to a Q-value.

Neighbourhood Aggregation
Recently, several studies demonstrated that the choice of ag-
gregation function can considerably affect the performance
of a GNN. The purpose of AGGR is to aggregate the incom-
ing messages into a single fixed-size vector such that it can
be fed into the update function while sufficiently express-
ing the information contained in the incoming messages. A
suitable aggregation function extracts information from an
arbitrary number of messages and should be independent
to the equally arbitrary ordering of those messages. Prior
GNN studies proposed: learnable methods such as convolu-
tions (Kipf and Welling 2017); injective methods such as
summation (SUM) (Xu et al. 2019); and statistical meth-
ods such as mean (MEAN), maximum (MAX), minimum
(MIN) and standard deviation (STD) (Corso et al. 2020).
From these, convolutions and SUM have been applied to
the static argumentation problem of predicting argument ac-
ceptance. Where Kuhlmann and Thimm (2019); Malmqvist
et al. (2020) show reasonable performance with a Graph
Convolutional Network, Craandijk and Bex (2020) show al-
most perfect performance on the static argument acceptance
task using the SUM aggregator.

Although SUM is theoretically proven to be the most ex-
pressive aggregator (Xu et al. 2019), it might be unfit for en-
forcement problems. Since our model exchanges messages
on a fully connected graph, the amount of incoming mes-
sages can vary significantly between different sized AFs.
As the SUM aggregator amplifies messages, especially over
multiple message passing steps, a large shift in node degree
can lead to unstable node embeddings (Joshi et al. 2020).
Recent work suggests using a combination of node de-
gree agnostic statistical aggregation metrics (MEAN, MAX,
MIN, STD), where each function serves a different pur-
pose (Corso et al. 2020). MEAN computes the average of
incoming messages, MIN and MAX can distinguish discrete
signals, and STD quantifies the distribution of the incoming
messages.

5 Experimental Setup
For all enforcement variants and semantics described in
Section 2, we train three models end-to-end with deep
Q-learning. GCN uses a convolutional aggregator as used

by Kuhlmann and Thimm (2019); Malmqvist et al. (2020),
AGNN uses a sum aggregator as used by Craandijk and Bex
(2020), and EGNN uses a combination of MEAN, MAX,
MIN, STD aggregators. For implementation details we refer
to Appendix A.

We sample AFs uniformly from all AF families imple-
mented in the following generators from ICCMA (Gaggl
et al. 2020): AFBenchGen2, AFGen Benchmark Generator,
GroundedGenerator, SccGenerator, StableGenerator. The
generation parameters are chosen randomly for each sam-
ple, resulting in a diverse set of AFs. To avoid duplicates,
each AF is checked for isomorphism with Nauty (McKay
and Piperno 2014). For each AF F = (A,R) we generate
extension enforcement problems by randomly selecting a set
of arguments S ⊆ Awhich currently isn’t enforced and such
that 0 < |S| < |A|. Status enforcement problems are gen-
erated by taking S and randomly splitting it into a positive
set P and negative set N such that P ∪ N = S. We gener-
ate training instances with |A| from (3, 4, 5, ..., 9) and 1000
validation instances containing |A| = 10 arguments to train
the network. We verify when arguments are successfully en-
forced by enumerating the extensions with the sound and
complete µ-toksia solver (Niskanen and Järvisalo 2020a).
Finally, to evaluate the performance we generate two test
datasets of 1000 instances containing |A| ∈ {10, 20, 50}.
The |A| = 10 test set tests how well the learned algorithm
generalizes from the training data to AFs not seen during
training. The |A| = 20 and |A| = 50 sets are used to evalu-
ate the scalability of the solvers.

6 Results
We assess the performance of all methods with respect to
two goals: finding a solution within an acceptable time-
frame (efficiency) and minimizing the number of changes
to the argumentation framework (optimality). We measure
efficiency by the number of instances solved within a time-
out limit, which is reached after 15 minutes3 or if the maxi-
mum number of changes necessary to enforce a set of argu-
ments (i.e. the total number of edges) have been performed.
For optimality, we measure the approximation ratio with
respect to the number of changes made by the exact sym-
bolic solver4 (Niskanen, Wallner, and Järvisalo 2016; Niska-
nen and Järvisalo 2020b). Note that for Sceptgrd, Sceptprf,
Sceptcom, Credgrd we cannot obtain approximation ratios as
currently no solver exists. Table 1 shows the results for all
tasks under all semantics on the test sets for generalization
(|A| = 10) and scalability (|A| ∈ {20, 50}).

Graph Neural Networks
First, we compare the different graph neural network mod-
els on the test sets where |A| ∈ {10, 20}. It is apparent from
Table 1 that GCN is not able to learn an effective enforce-
ment heuristic. On both the |A| = 10 and |A| = 20 test
sets, it fails to solve a large fraction of the problem instances

3This is the same timeout limit as used by (Niskanen, Wallner,
and Järvisalo 2016; Wallner, Niskanen, and Järvisalo 2017).

4Maadoita (for the grounded semantics) and Pakota (for the
other semantics).

Strictσ Non− strictσ Credσ Sceptσ

|A| Model grd prf stb com grd prf stb grd prf stb prf stb

10

So
lv

ed
Symb. 1000 1000 1000 1000 1000 1000 1000 - 1000 1000 - 1000
GCN 13 116 94 137 690 644 633 454 693 583 532 466
AGNN 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
EGNN 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

R
at

io

Symb. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 - 1.000
GCN 10.74 18.91 9.869 9.598 3.677 5.072 5.249 - 9.782 12.75 - 6.073
AGNN 1.016 1.191 1.001 1.007 1.017 1.022 1.039 - 1.086 1.132 - 1.020
EGNN 1.009 1.005 1.001 1.002 1.002 1.006 1.002 - 1.049 1.053 - 1.017

20

So
lv

ed

Symb. 1000 999 1000 1000 1000 1000 1000 - 986 984 - 995
GCN 1 66 58 65 465 431 427 274 395 360 319 261
AGNN 666 973 961 961 988 1000 986 998 876 848 974 926
EGNN 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

R
at

io

Symb. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 - 1.000
GCN 2.500 63.97 19.51 14.64 8.280 12.35 12.59 - 22.83 29.31 - 15.94
AGNN 10.01 2.303 1.654 3.228 3.458 4.091 7.667 - 7.865 5.538 - 9.960
EGNN 1.186 1.041 1.207 1.074 1.135 1.097 1.070 - 1.772 1.560 - 1.193

50

So
lv

. Symb. 984 880 1000 999 739 999 999 - 452 544 - 829
EGNN 1000 1000 988 991 1000 1000 1000 983 974 995 1000 1000

R
at

io Symb. 1 1 1 1 1 1 1 - 1 1 - 1
EGNN 2.084 1.343 2.087 2.611 3.417 4.138 2.482 - 3.607 3.679 - 3.217

Table 1: Enforcement results on the |A| = 10, |A| = 20 and |A| = 50 test sets. The approximation ratios are only reported for
instances solved within the timeout limit. For all coinciding problems, notably Non− strictprf = Non− strictcom, Credprf =
Credcom, and Credgrd = Sceptgrd = Sceptcom we only report the former.

and exhibits high approximation ratios. AGNN and EGNN
on the other hand, show to generalize from the training data
by learning an efficient heuristic that solves all |A| = 10 in-
stances. When scaling up to size |A| = 20 however, AGNN
fails to find a solution for a considerable number of problem
instances, while EGNN still solves all instances. This dif-
ference is also apparent when comparing optimality. Where
both AGNN and EGNN find near optimal solutions on the
|A| = 10 set, scaling to |A| = 20 causes a significant drop
in performance for AGNN, while EGNN stays in proximity
to the optimal solution. These results confirm the scalabil-
ity issues of the SUM aggregator as discussed in Section 4.
Since EGNN outperforms the other GNN architectures on
all evaluation methods, we use EGNN for our further exper-
iments.

Symbolic solver
If we now compare EGNN to the symbolic solver, the differ-
ence between an exact solver and the learnt heuristic become
apparent. The symbolic solver is guaranteed to find an opti-
mal solution, and does so for all enforcement tasks on the
|A| = 10 set. However, on larger AFs, the time needed to
find a solution on problems that exhibit a high computational
complexity can exceed the acceptable limits, which leads to
the symbolic solver not being able to solve all instances in
the test sets for |A| ∈ {20, 50}. For Strictprf and all status
enforcement problems the fraction of unsolved instances is

relatively modest under |A| = 20. However, on the |A| = 50
test set the symbolic solver fails to find all solutions un-
der almost all enforcement problems and semantics. The ex-
tension enforcement problems Strictprf and Non− strictgrd
show quite significant perfomance drops with only 880 and
739 solved, respectively. For credulous status enforcement
problems, the performance of the symbolic solver drops
even further, with the solver only finding a solution in just
around half of the instances for Credprf and Credstb.

EGNN, on the other hand, is primarily optimized to find
a solution, with minimizing the number of changes as a sec-
ondary goal. EGNN solves all instances on both the |A| =
10 and |A| = 20 sets within the time limit and reaches near
optimal approximation ratios on most problems. Scaling up
to |A| = 50 causes EGNN to not being able to solve all
instances under some enforcement problems and leads to
an increase in approximation ratios. This is not surprising
since the symbolic solver results show that finding an opti-
mal solution for these problems is generally hard. Moreover,
EGNN solves almost all instances across all tasks, thereby
outperforming the symbolic solver, especially on the status
enforcement problems (Cred,Scept) and Non− strictgrd and
Strictprf.

New solvers
For Sceptcom (equal to Sceptgrd and Credgrd) and Sceptprf,
we obtain, as far as we are aware, the first solver on these

−1 −0.5 0 0.5 1

10−1

100

101

102

103

Ratio

Ti
m

e
EGNN Symb.

Credstb
Credcom
Strictprf

Figure 3: The runtime in seconds as a function of the en-
forcement ratio for EGNN and the symbolic solver. The
dashed line indicates the timeout limit. Since Credcom and
Credprf coincide, we only report the former.

tasks. EGNN solves all problem instances on both test sets.
Since currently no solver exists, we cannot report approxi-
mation ratios. However, the number of changes performed is
in line with the results on other tasks, indicating the approx-
imation ratios are likely to be similar as well. These results
indicate our method is able to learn near-optimal enforce-
ment heuristics, even on problems for which currently no
solver exists.

Efficiency
We now turn to a closer inspection of the differences be-
tween the symbolic solver and EGNN in terms of efficiency.
We stress that it is not our main goal to design an algo-
rithm with the lowest runtime. Implementing methods for
speeding up deep learning models constitutes an active re-
search area (Cheng et al. 2018) and falls beyond the scope of
this research. Besides, due to differences between the deep
learning and symbolic paradigms in terms of implementa-
tion (Python vs C++) and hardware (GPU vs CPU), runtimes
can vary by two orders of magnitude and are thus hard to
compare (Kool, van Hoof, and Welling 2019). Nevertheless,
comparing runtimes provides insight in how the complex-
ity of a problem affects the efficiency of both methods. We
find that the runtime of the symbolic solver is dependent on
the fraction of arguments that should be enforced positively
or negatively. We express this enforcement ratio by |P |−|N ||A| ,
where P = S and N = ∅ for all extension enforcement
problems. The enforcement ratio equals −1 when all argu-
ments have to be enforced negatively, 1 when all arguments
have to be enforced positively, and 0 when the number of
arguments that should be enforced positively and negatively
are equal. We demonstrate the effect on the runtimes by sam-
pling 10.000 AFs with uniformly random enforcement ra-
tios and |A| = 20. Figure 3 compares the runtimes of both

solvers with respect to the enforcement ratio on problems
where the symbolic solver reaches the timeout limit. From
the figure, it is apparent that the runtime of the symbolic
solver increases when the fraction of arguments that should
be enforced positively increases for Credstb and Credcom.
Under Strictprf enforcement, the runtime increases when the
fraction of arguments that should be enforced decreases. The
efficiency of EGNN, on the other hand, is only dependent
on the size of the AF, the number of message passing steps
and the number of changes it performs. As a result, the run-
times stay almost constant and even outperform the sym-
bolic solver on nearly all test instances, despite not being
optimized for speed.

7 Discussion
Related Work

The past few years have seen an increasing amount of re-
search effort directed to using GNNs for combinatorial op-
timization problems (Bengio, Lodi, and Prouvost 2021).
However, existing work on neuro-symbolic methods for ar-
gumentation only focuses on the static problem of determin-
ing which arguments are (part of) an extension (Kuhlmann
and Thimm 2019; Craandijk and Bex 2020; Malmqvist et al.
2020). Furthermore, all these approaches are supervised by
an existing solver, which makes them unsuitable for learning
new solvers like we did in this paper.

With regard to reinforcement learning, some work exists
on applying tabular Q-learning methods for argument se-
lection in an argumentation dialogue (Alahmari, Yuan, and
Kudenko 2019; Georgila and Traum 2011). Furthermore,
Gao and Toni (2014) use an argumentation framework to
represent domain knowledge in a multi-agent reinforcement
learning environment. Although these authors use (standard)
reinforcement learning in conjunction with argumentation,
they do not tackle the problem of (finding heuristics for) en-
forcement in argumentation.

Conclusion

The research has shown that it is possible to learn a near
optimal heuristic for various enforcement problems with a
single graph neural network architecture through reinforce-
ment learning. The proposed approach is not dependent on
the supervision of an existing solver, but learns a heuristic
end-to-end simply by verifying when a set of arguments has
been enforced, enabling the discovery of heuristics for previ-
ously unsolved problems. The experimental results support
the idea that solvers can be learned end-to-end with deep re-
inforcement learning without the tailoring and expert knowl-
edge of a human designer. Further research is required to de-
termine whether the approximation ratios and scalability can
be improved.

8 Acknowledgements
This work was supported by the Netherlands Police and the
Dutch national e-infrastructure of the SURF Cooperative.

References
Alahmari, S.; Yuan, T.; and Kudenko, D. 2019. Rein-
forcement Learning for Dialogue Game Based Argumen-
tation. In Grasso, F.; Green, N.; Schneider, J.; and Wells,
S., eds., Proceedings of the 19th Workshop on Compu-
tational Models of Natural Argument co-located with the
14th International Conference on Persuasive Technology,
CMNA@PERSUASIVE 2019, Limassol, Cyprus, April 9,
2019, volume 2346 of CEUR Workshop Proceedings, 29–
37. CEUR-WS.org.

Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.;
Prakken, H.; Reed, C.; Simari, G. R.; Thimm, M.; and Vil-
lata, S. 2017. Towards Artificial Argumentation. AI Maga-
zine, 38(3): 25–36.

Baumann, R. 2012. What Does it Take to Enforce an Ar-
gument? Minimal Change in abstract Argumentation. In
ECAI 2012 - 20th European Conference on Artificial Intel-
ligence. Including Prestigious Applications of Artificial In-
telligence (PAIS-2012) System Demonstrations Track, Mont-
pellier, France, August 27-31 , 2012, 127–132.

Baumann, R.; and Brewka, G. 2010. Expanding Argumen-
tation Frameworks: Enforcing and Monotonicity Results. In
Baroni, P.; Cerutti, F.; Giacomin, M.; and Simari, G. R.,
eds., Computational Models of Argument: Proceedings of
COMMA 2010, Desenzano del Garda, Italy, September 8-
10, 2010, volume 216 of Frontiers in Artificial Intelligence
and Applications, 75–86. IOS Press.

Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine learn-
ing for combinatorial optimization: A methodological tour
d’horizon. Eur. J. Oper. Res., 290(2): 405–421.

Charwat, G.; Dvorák, W.; Gaggl, S. A.; Wallner, J. P.; and
Woltran, S. 2015. Methods for solving reasoning problems
in abstract argumentation - A survey. Artificial Intelligence,
220: 28–63.

Cheng, Y.; Wang, D.; Zhou, P.; and Zhang, T. 2018. Model
Compression and Acceleration for Deep Neural Networks:
The Principles, Progress, and Challenges. IEEE Signal Pro-
cess. Mag., 35(1): 126–136.

Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bougares, F.;
Schwenk, H.; and Bengio, Y. 2014. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Ma-
chine Translation. CoRR, abs/1406.1078.

Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; and Velickovic,
P. 2020. Principal Neighbourhood Aggregation for Graph
Nets. CoRR, abs/2004.05718.

Coste-Marquis, S.; Konieczny, S.; Mailly, J.; and Marquis,
P. 2015. Extension Enforcement in Abstract Argumenta-
tion as an Optimization Problem. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, 2876–2882.

Craandijk, D.; and Bex, F. 2020. Deep Learning for Abstract
Argumentation Semantics. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI 2020, 1667–1673. ijcai.org.

d’Avila Garcez, A. S.; Gori, M.; Lamb, L. C.; Serafini, L.;
Spranger, M.; and Tran, S. N. 2019. Neural-symbolic Com-
puting: An Effective Methodology for Principled Integration
of Machine Learning and Reasoning. FLAP, 6(4): 611–632.
Doutre, S.; and Mailly, J. 2018. Constraints and changes:
A survey of abstract argumentation dynamics. Argument &
Computation, 9(3): 223–248.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence,
77(2): 321–358.
Dvorák, W.; and Dunne, P. E. 2017. Computational Prob-
lems in Formal Argumentation and their Complexity. FLAP,
4(8).
Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband,
I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin,
O.; Blundell, C.; and Legg, S. 2017. Noisy Networks for
Exploration. CoRR, abs/1706.10295.
Gaggl, S. A.; Linsbichler, T.; Maratea, M.; and Woltran, S.
2020. Design and results of the Second International Com-
petition on Computational Models of Argumentation. Arti-
ficial Intelligence, 279: 103193.
Gao, Y.; and Toni, F. 2014. Argumentation Accelerated
Reinforcement Learning for Cooperative Multi-Agent Sys-
tems. In Schaub, T.; Friedrich, G.; and O’Sullivan, B., eds.,
ECAI 2014 - 21st European Conference on Artificial Intelli-
gence, 18-22 August 2014, Prague, Czech Republic - Includ-
ing Prestigious Applications of Intelligent Systems (PAIS
2014), volume 263 of Frontiers in Artificial Intelligence and
Applications, 333–338. IOS Press.
Georgila, K.; and Traum, D. R. 2011. Reinforcement Learn-
ing of Argumentation Dialogue Policies in Negotiation. In
INTERSPEECH 2011, 12th Annual Conference of the In-
ternational Speech Communication Association, Florence,
Italy, August 27-31, 2011, 2073–2076. ISCA.
Joshi, C. K.; Cappart, Q.; Rousseau, L.; Laurent, T.; and
Bresson, X. 2020. Learning TSP Requires Rethinking Gen-
eralization. CoRR, abs/2006.07054.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In 5th Inter-
national Conference on Learning Representations).
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net.
Kuhlmann, I.; and Thimm, M. 2019. Using Graph Convolu-
tional Networks for Approximate Reasoning with Abstract
Argumentation Frameworks: A Feasibility Study. In Pro-
ceedings of the 13th international conference on Scalable
Uncertainty Management (SUM), 24–37.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In Proceedings of the 7th International
Conference on Learning Representations (ICLR).
Malmqvist, L.; Yuan, T.; Nightingale, P.; and Manandhar, S.
2020. Determining the Acceptability of Abstract Arguments
with Graph Convolutional Networks. In SAFA@ COMMA,
47–56.

McKay, B. D.; and Piperno, A. 2014. Practical graph iso-
morphism, II. Journal of Symbolic Computation, 60: 94–
112.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Niskanen, A.; and Järvisalo, M. 2020a. µ-toksia: An Ef-
ficient Abstract Argumentation Reasoner. In Calvanese,
D.; Erdem, E.; and Thielscher, M., eds., Proceedings of the
17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece,
September 12-18, 2020, 800–804.
Niskanen, A.; and Järvisalo, M. 2020b. Strong Refinements
for Hard Problems in Argumentation Dynamics. In Gia-
como, G. D.; Catalá, A.; Dilkina, B.; Milano, M.; Barro,
S.; Bugarı́n, A.; and Lang, J., eds., ECAI 2020 - 24th Eu-
ropean Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29
- September 8, 2020 - Including 10th Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS 2020),
volume 325 of Frontiers in Artificial Intelligence and Appli-
cations, 841–848. IOS Press.
Niskanen, A.; Wallner, J. P.; and Järvisalo, M. 2016. Opti-
mal Status Enforcement in Abstract Argumentation. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, 1216–1222.
Niskanen, A.; Wallner, J. P.; and Järvisalo, M. 2016. Pakota:
A System for Enforcement in Abstract Argumentation. In
Michael, L.; and Kakas, A. C., eds., Proceedings of the 15th
European Conference on Logics in Artificial Intelligence
(JELIA 2016), volume 10021 of Lecture Notes in Computer
Science, 385–4000. Springer.
Niskanen, A.; Wallner, J. P.; and Järvisalo, M. 2018. Ex-
tension Enforcement under Grounded Semantics in Abstract
Argumentation. In Thielscher, M.; Toni, F.; and Wolter, F.,
eds., Proceedings of the 16th International Conference on
Principles of Knowledge Representation and Reasoning (KR
2018), 178–183. AAAI Press.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Smith, L. N. 2017. Cyclical Learning Rates for Training
Neural Networks. In Proceedings of the IEEE Winter Con-
ference on Applications of Computer Vision (WACV). ISBN
9781509048229.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press. ISBN 978-0-262-19398-6.
Wallner, J. P.; Niskanen, A.; and Järvisalo, M. 2017. Com-
plexity Results and Algorithms for Extension Enforcement
in Abstract Argumentation. J. Artif. Intell. Res., 60: 1–40.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019.

Appendix

A Reproducibility
We perform our experiments on a Ubuntu GNU/Linux machine with 16-GB RAM, a 3.60GHz Intel Core i7-9700K CPU and an
NVIDIA GeForce RTX 2060 GPU. We publish our code at https://github.com/DennisCraandijk/DL-Abstract-Argumentation
with scripts to generate the data and references to all relevant software included. We instantiate the graph neural network models
with a gated recurrent unit (Cho et al. 2014) for UPDT, and a multilayer perceptron for READ and MSG. The dimensions of
the node vectors and all hidden neural layers are d = 128. Using significantly smaller dimensions harms performance, while
using larger dimensions makes the model size too large for our GPU memory.

The model is run for T = 5 message passing steps. We experimented with T ∈ (10, 20). Although this can improve
performance of the GNN, it also increases the time needed to train all models, exceeding our computational budget. We train
our model in batches containing 30 graphs using the AdamW optimizer (Loshchilov and Hutter 2019) with a cyclical learning
rate, since this method converges faster and requires less tuning compared to a linear learning rate (Smith 2017). We use a small
training, evaluation and test dataset to tune the hyperparameters. With the learning rate finder method (Smith 2017) we set the
cyclical learning rate between 2e−5 and 2e−8. Finally, we find using `2 regularization of 1e−2 and clipping the global `2 norm
to 1 to improves convergence.

We train enforcement models end-to-end with deep Q-learning. We set γ = 1 and divide the rewards by the maximum
episode length to normalize the total reward to [−1, 0]. Using a normalized reward signal stabilizes learning with a deep neural
network (Mnih et al. 2015). We use a replay buffer of 100.000 and find that a smaller replay buffer destabilizes training. We set
the maximum episode length to the total number of possible attack relations |A×A| (since each possible attack structure of an
AF can be reached within this number of changes) and continue training until the average reward per episode stops improving
for 100.000 steps. Finally, we add learned noise to the parameters of UPDT and MSG to add stochasticity to the message
passing process, inducing efficient and automatic exploration of the environment (Fortunato et al. 2017). Although exploration
induces stochasticity, after training 2 times on each problem (16 total) we find training and results to be stable against different
seeds.

