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Abstract

In cooperative hunting, multiple agents need
to coordinate their behavior to achieve a
common goal. Previous research into the
emergence of cooperative hunting has found
conflicting results with respect to the ef-
fectiveness of communication: some authors
show that communication can be helpful for
groups of artificial agents, whilst others find
that communication can also decrease perfor-
mance. In this paper, we model the emer-
gence of cooperative hunting using neural
networks and genetic algorithms. We find
that the effectiveness of communication in-
creases with the complexity of the environ-
ment (modeled as the vision range of the
hunters). That is, while communication be-
tween agents slows down the emergence of
cooperative hunting in simple environments
(i.e., when vision range is large), communi-
cation can speed up emergence of coopera-
tive hunting in complex environments (when
vision range is small).

Preliminary work. Under review for BENELEARN 2014.
Do not distribute.

1. Introduction

When designing cooperative multi-agent systems, it is
useful to watch the behavior of animals and humans.
One type of behavior that has proved interesting is
cooperative hunting: a group of animals finds and
catches a prey in a complex and dynamical world by
using a cooperative strategy. Such cooperative strate-
gies can be interesting for designing behavior of game
agents or robot teams.

Nature provides some examples of cooperative hunting
behavior: a pack of wolves or hyenas catching their
prey. The emergence of cooperative hunting in nature
is not fully understood. One possible way to study the
emergence of cooperative hunting is to study emergent
behavior of artificial groups. The hunting behavior of
for example wolves can be described in a few simple
rules (Muro et al., 2011). When the world is more
complex and adaptive behavior is required, the com-
bination of neural networks and a genetic algorithm is
found to be useful to reach emergence of effective co-
operative hunting behaviors in artificial teams (Haynes
& Sen, 1996; Haynes & Sen, 1997a; Yong & Miikku-
lainen, 2009).

The main question is: how can cooperative hunting be
established best? There are a number of factors that
influence the emergence of cooperative behavior, for
example, whether the behavior of the different agents
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is heterogeneous or homogeneous, whether the whole
group or individual agents are rewarded when they
catch the prey and whether or not the agents commu-
nicate about, for example, the location of the prey or
their own location.

One possible way to study these different factors is
through simulations of hunting games such as the
pursuit-evasion task, in which several predators need
to catch the prey. This task is introduced by Benda
(1985) and is used to study the evolution of cooper-
ative behavior (Cliff & Miller, 1996; Haynes & Sen,
1997b; Jim & Giles, 2001; Yong & Miikkulainen, 2009;
Wittkamp et al., 2012; Jain et al., 2012). These studies
show the advantages and disadvantages of some design
choices. For example, Haynes & Sen (1996; 1997a)
used genetic programming to evolve predator popu-
lation strategies for the prey-capture task and found
that groups of heterogeneous agents performed better
on the task than groups of homogeneous agents. Yong
& Miikulainen (2009) and Rajagopalan et al. (2011)
showed that reward works very effectively as an incen-
tive to evolve cooperation among predators.

With respect to the role of communication, Yong &
Miikkulainen (2009) conclude that predator agents
work better together when they do not communi-
cate and only use cues from the environment (this is
called stigmergy). However, research has shown (Jim
& Giles, 2001; Rajagopalan et al., 2011; Rawal et al.,
2012) that communication is useful: Rajagopalan et al.
(2011) found that performance increases when preda-
tors share their locations. The question that remains
is then: when is it useful for autonomous agents to
communicate?

Since Yong & Miikkulainen (2009), Rajagopalan et al.
(2011) and Rawal et al. (Rawal et al., 2012) used
the same techniques and nearly the same experimen-
tal setup, it is possible to compare their results. The
main difference between the three studies is the com-
plexity of the environment, which is determined by, for
example, the observability and the number of preys.
In Yong & Miikkulainen (2009) the environment is
fully observable, in the sense that the predators al-
ways know the coordinates of the prey. In Rawal et al.
(2012) the environment is sometimes fully observable
and sometimes not visible for the predators. In Yong
& Miikkulainen (2009) and Rawal et al. (2012) the
predators need to catch just one prey. In Rajagopalan
et al. (2011), there are multiple prey in the environ-
ment that the predators could catch. So, it seems that
communication is more useful when the complexity of
the environment increases.

In this paper, we aim to further verify whether com-

municative behavior starts outperforming stigmergic
behavior. We choose the vision range of the predators
as the parameter that reflects the complexity of the
environment. Following Yong & Miikkulainen (2009)
and Rajagopalan et al. (2011), we formulated the fol-
lowing hypothesis about the evolution of cooperative
behaviors in predators: as the complexity of the world
increases, the time needed for cooperative hunting to
emerge increases more rapidly for non-communicative
groups than for communicative groups. In figure 1,
this hypothesis is shown in a graph. When the preda-
tors communicate, the evolution of cooperative behav-
ior takes more time since the neural networks have to
deal with more input information. In a simpler envi-
ronment this extra information is not useful, so there-
fore non-communicative predator teams will perform
better. In a more complex world communication is
useful: the time to establish cooperation is smaller for
agents that can communicate.

The rest of this paper is structured as follows. In Sec-
tion 2 the experiment is discussed: world constraints,
used techniques and simulation setup. In Section 3 the
results are presented and in Section 4 a final conclusion
is given.

2. Methods

We designed an experiment to observe cooperation in
predators hunting prey that move randomly. The sim-
ulation was based on the pursuit-evasion task intro-
duced by Benda (1985). The goal is to test whether
predator communication influences evolution of coop-
eration as was hypothesized in Section 1.

First, we discuss the simulation environment and its
constraints. The next subsection will explain how ge-
netic algorithms and neural networks are used in this
experiment. Finally, the setup of the experiment will
be discussed.

2.1. The simulation environment

In this study, two different simulation environments
were tested: a world with boundaries (a ‘square’
world) and a world without boundaries (a toroidal
world). The worlds differ in the number of predators
that are needed to catch a prey: in the square world,
a prey can be caught with the help of the boundaries.
In this situation, two predators can successfully catch
the prey by driving the prey into a corner, while in the
toroidal world at least four agents are needed. Both
environments give rise to different hunting opportuni-
ties: the square world allows for an interesting chase
towards an edge; the toroidal world, on the other hand,
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Figure 1. The hypothesized influence of vision range of the predator on performance

allows the group of predators to split, having both
groups go in opposite ways to catch the prey from two
sides.

In this experiment, more predator agents (N = 20)
were used than necessary for solving the problem. We
call these extra agents collaborators. The design of this
experiment is different on this point from the experi-
ment design as used in Yong & Miikkulainen (2009),
Rajagopalan et al. (2011) and Rawal et al. (2012).
Therefore, this experiment is able to show whether
more communication is useful in more complex situ-
ations. We think that collaborator agents, who do
not directly help to catch the prey, could give their
colleagues useful information about the complex envi-
ronment.

Both worlds have 40×40 grid locations without obsta-
cles. The prey and predators can move in four direc-
tions: east, west, north and south. In Yong & Miikku-
lainen (2009), Rajagopalan et al. (2011) and Rawal et
al. (2012) a 100 × 100 toroidal world was used. To
reduce the computation time, a smaller environment
was preferred for this study.

The initial positions of the prey and the predators are
chosen randomly. The prey and the predators move
one step at a time in one of the four cardinal direc-
tions, so to move diagonally, an agent would have to
take two steps. Like in Yong & Miikkulainen (2009),
Rajagopalan et al. (2011) and Rawal et al. (2012),
all predators and the prey move simultaneously. How-
ever, in our study the prey moves randomly instead of
moving directly away from the current nearest preda-
tor as in Yong & Miikkulainen (2009). The predators
have a neural network that will decide the next step.
The neural network has four output nodes correspond-
ing to the directions north, south, east and west. The
output node with the highest activation will determine
the next step.

Next to these constraints, which are constant across all

simulations, the environment has some variable con-
straints concerning the vision range of the predators
and communication. The vision range represents the
maximum length of the vision field of the predator.
If the vision range is 50%, the predator is able to see
50% of the diagonal of the world. A predator knows
the distance to the prey when the following rule holds:

euclideanDistance(prey, predator) <

visionRange

100%
∗
√

Width2 + Height2.

That is, if the euclidean distance between the prey and
the predator is small enough given the vision range and
width and height of the world, the prey is observable
to the predator. The distances in x-direction and y-
direction between the prey and the predator are then
given to the neural network of the predator as input. If
the euclidean distance is too large, the neural network
will be given input zero.

Communication between the predators is modeled as
position sharing, that is, a communicating predator
knows the distance between him and other preda-
tors. Different communication conditions were tested
by changing the amount of neighbors that share their
position (the variable k). In case of k = 0 no preda-
tor shares its position with another predator, and the
predators can sense only prey movements, so they
have to use that for deciding their next step. This
is the so-called stigmergic communication situation
as described in Yong & Miikkulainen (2009) and Ra-
jagopalan (2011). If k > 0, a predator knows the dis-
tance between himself and k nearest neighbor preda-
tors.

2.2. Neural Network

Every predator agent has its own neural network. The
neural network is a simple feed forward neural network
that has 2+2*k (k is the number of nearest predators
for which a predator knows the position) input nodes,
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one hidden layer of ten nodes and an output layer of
four nodes. For calculating activation a simple sigmoid
function is used.

The inputs for the neural network are the distances
to the prey and to the k nearest predators. Each dis-
tance is encoded in two input nodes: one encodes the
x-coordinate of the owner of the neural network (a
predator) minus the x-coordinate of the prey or an-
other predator, while the other does the same for the
y-coordinates. If the prey is not visible, the inputs
for the prey will be zero. The same holds for preda-
tors that do not share their position: the input for
no-communicating predators will be zero. It is pos-
sible that all inputs are zero, since the agent has no
knowledge at all at that moment.

In each scenario, the neural network has ten hidden
units and four output units: one for the north direc-
tion, one for the east direction, one for south, and one
for west. The move of a predator in a specific situa-
tion is the direction of which the corresponding output
node has the highest value of all output nodes.

2.3. Genetic Algorithm

A genetic algorithm is used to optimize the weights
of the neural networks. The agent population has N
chromosomes, where each chromosome represents an
agent. Each chromosome contains the parameters of
the neural network of an agent. Each generation, all
N = 20 agents play the predator-prey pursuit evasion
task in the same world. The 16 agents having the
shortest Euclidean distance to the prey at the end of
the generation are passed on to the next generation.

In Yong & Miikkulainen (2009), Rajagopalan et al.
(2011) and Rawal et al. (2012) the hidden layers of
neural networks evolved out of a separate population
for each neuron. This technique is called multi-agent
Enforced SubPopulations (ESP) (Gomez & Miikku-
lainen, 1997; Gomez & Miikkulainen, 1999). This al-
lows for the evolution of heterogeneous agents that
perform different tasks within the cooperative hunt.
Due to the computational demands of ESP, we decided
to use a different technique: neural networks were used
as brains of the predators and a genetic algorithm to
optimize the weights of the networks, to give rise to
some cooperative behavior. In this situation there is
one population of neural networks. However, since a
high number of best agents stay in the population and
mutation is applied to the new produced agents, there
is space for heterogeneous behavior to evolve.

After each generation, the 16 predator agents with the
shortest Euclidean distance to the prey pass on to the

next generation. In addition, the two best agents,
defined as those agents that have the shortest Eu-
clidean distance to the prey, are selected to construct 4
new predator agents through Uniform Crossover with
a mixing ratio of 0.5. That is, these new predator
agents inherit each of their individual genes, which in
this case correspond to one of the weights in the neural
network, from a given parent with probability 0.5.

To introduce more variation in the population, muta-
tion with a probability of 0.1% is applied to each of
the four newly produced agent. In other words, to
each individual weight (gene) a random value between
-0.1 and 0.1 is added with a probability of 0.1%. In-
troducing mutation prevents getting stuck in a local
minimum and ensures that the evolution will continue
and new behavior can emerge.

2.4. Experiment setup

Different scenarios were tested with varying the vari-
ables for vision range and communication. The vision
range ranged from 0% to 100% with a step size of 10%.
The size of the communicating neighborhood k varied
between k = 0 and k = N − 1. All combinations of
vision range and communicating neighborhood were
tested.

For each scenario we used N = 20 predators and one
prey. We calculated the mean score of each scenario
over 100 trials. Each trial ran for a number of genera-
tions. During a generation g, the number of time steps
needed for the predators to catch the prey (icatch(g))
was recorded, with a maximum of 200 time steps. Af-
ter a catch or when 200 time steps had passed, the
agents were randomly replaced and a new generation
starts.

When the prey is caught 10 times at g10catches or when
g = 800, the experiment stops and the score is calcu-
lated. The performance score of a trial is computed as
the total number of time steps that have passed across
all 10 generations.

score =

G∑
g=1

(iend(g))

G = min(800, g10catches)

iend = min(200, icatch)

(1)

3. Results

The performance mean score (mean time for catching
the prey 10 times) for the different scenarios are shown
in figures 2 (square world) and 3 (toroidal world) for
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Figure 2. Mean 10-times-catching time in the square world for vision range between 0-100% and k=0 (stigmergic behavior),
k=3 and k=19 neighbors. The figure summarizes results over 100 trials.

selected communication parameter k.

First, it is interesting to compare the performance for
the stigmergic behavior scenarios (k = 0) with the
performance for k = 3. These scenarios are used as
well in Yong & Miikkulainen (2009), Rajagopalan et
al. (2011) and Rawal et al. (2012). Yong (2009)
concluded that k = 3 has a lower performance than
k = 0, but (Rajagopalan et al., 2011) and (Rawal
et al., 2012) concluded that communication makes it
easier to evolve coordinated hunting behavior. Figures
2 and 3 show that k = 0 outperforms k = 3 for all dif-
ferent vision ranges except for a vision range of zero
in the toroidal world. An ANOVA for repeated mea-
sures for performance score on k, found a significant
difference between k = 0 and k = 3 for the toroidal
world(F (1,2196) = 12.13, p <0.05), but not for the
squared world (F (1,2196) = 2.032, p = 0.15). There-
fore stigmergic behavior outperforms in both simple
situations (high vision range) and more complex sit-
uations (low vision range). This is in line with our
conclusion of Yong (2009), but not in line with the
conclusion of Rajagopalan et al. (2012) and Rawal et
al. (2011).

To see whether communication with more than a rea-
sonable amount of agents needed to solve the problem
is useful, we compare the performance for k = 0 and
k = 19. In the square world the performance scores
for k = 0 and k = 19 intersect each other at a vision
range of 20-25%. For higher vision range the perfor-
mance for k = 0 is higher, for lower vision ranges the
performance for k = 19 is higher. In the toroidal world
the performance scores for k = 0 and k = 19 is almost
similar for higher vision range. For a vision range be-

low 25%, the performance for k = 19 is much better.
This is in line with the hypothesis.

The results for all values of k can be found in Figure
4(square world) and Figure 5 (toroidal world). We
find that a higher value of k is generally more useful
in complex situation, when the vision range is below
30%. Furthermore we find that a difference between k
and k + 1 is small, but the difference between k and
k + 3 or more, influences the result much more.

4. Conclusion and discussion

The goal of this experiment was to test whether com-
munication is necessary in complex situations and
whether in simple situations the problem can be solved
faster by just stigmercy. Given the results as reported
by Yong & Miikkulainen (Yong & Miikkulainen, 2009),
it was expected that for simple situations (high vision
range) stigmergic behavior outperforms communica-
tion. Given the results in (Rajagopalan et al., 2011)
and (Rawal et al., 2012), it was expected that com-
munication outperforms stigmergic behavior in more
complex situations.

The results of this experiment show that stigmergic
behavior outperforms communication in simple situ-
ations, but not in complex situations. However, for
good performance in complex situations, communica-
tion with more predators than needed to solve the
problem is needed. In this experiment, it was not
enough to communicate with just three other neigh-
bors. Therefore this experiment reinforces the conclu-
sion of Yong & Miikkulainen (Yong & Miikkulainen,
2009) that stigmercy alone works out better than com-
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Figure 3. Mean 10-times-catching time in the toroidal world for vision range between 0-100% and k=0 (stigmergic behav-
ior), k=3 and k=19 neighbors. The figure summarizes results over 100 trials.

munication with 3 neighbors.

When communicating with k = 19 neighbors in the
toroidal world, the vision range seems not to matter
at all. This is an interesting result. We think that
the predators in this scenario found an optimal strat-
egy without knowing the location of the prey. For
future research it would be interesting to do the ex-
periment again with a prey that always moves away
from the predators and to verify whether there could
still emerge an optimal strategy for 20 collaborators.

We did the experiment in two different worlds: a
square world with boundaries and a toroidal world
without boundaries. We saw that communication was
much more helpful in the toroidal world. Probably,
the agents need the positions of their colleagues to
navigate through the environment. To see what the
influence is of the extra added collaborators, more re-
search needs to be done. This experiment should be
done again for N = 4 in a toroidal world.
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