
July 2020

Estimating Stability for Efficient
Argument-based Inquiry

Daphne ODEKERKEN a,b, AnneMarie BORG a and Floris BEX a,c

a Department of Information and Computing Sciences, Utrecht University 1

b National Police Lab AI, Netherlands Police
c Tilburg Institute for Law, Technology and Society, Tilburg University

Abstract. We study the dynamic argumentation task of detecting stability: given
a specific structured argumentation setting, can adding information change the ac-
ceptability status of some propositional formula? Detecting stability is not tractable
for every input, but efficient computation is essential in practical applications. We
present a sound approximation algorithm that recognises stability for many inputs
in polynomial time and we discuss several of its properties. In particular, we show
under which constraints on the input our algorithm is complete. The proposed al-
gorithm is currently applied for fraud inquiry at the Dutch National Police - we
provide an English demo version that also visualises the output of the algorithm.
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1. Introduction

One task of the police is the intake of citizens’ reports on crimes: the citizen tells the
police what happened; subsequently, additional questions can be asked to determine if
the citizen has been the victim or witness of a crime. Certain high-volume crimes can be
reported online. This can be as simple as filling out a web form, but can also be a more in-
volved online dialogue with a (possibly artificial) agent. One specific high volume crime
that can be reported online at the Dutch National Police is internet trade fraud. This con-
cerns fake web shops and malicious second-hand traders on platforms such as eBay. In
[3], an initial sketch was given for an artificial agent handling the intake of internet trade
fraud by combining natural language processing with symbolic techniques for reasoning
about crime reports. During the subsequent development of the intake agent, we regarded
intake as argument-based inquiry [4]. In this inquiry, defeasible rules representing the
laws and practices surrounding trade fraud are combined with the citizen’s knowledge of
the specific situation they observed, to build arguments for and against the main claim
made by the citizen: that they have been the victim of trade fraud.

The first contribution of this paper is to present the implemented version of the in-
take agent. It has been released on the web site of the Dutch Police2 where it handles the
intake of hundreds of fraud reports every day. Because the police web site only shows

1This research has been partly funded by the Dutch Ministry of Justice and the Dutch National Police.
2https://aangifte.politie.nl/iaai-preintake

https://aangifte.politie.nl/iaai-preintake
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Figure 1. Overview of the hybrid inquiry agent for the intake of fraud complaints.

the Dutch user interface, we provide a demo3 of an English version that gives more in-
sight in the underlying reasoning. The agent’s architecture is illustrated in Figure 1. The
information extraction component uses natural language processing techniques to auto-
matically extract the initial observations from the free text user input [12]. These obser-
vations are then combined with rules concerning trade fraud in the argumentation setting
to build arguments for and against the claim “fraud”. The stability component decides if
any additional observations that the citizen could possibly add in the future can change
the acceptability status of the “fraud” claim. If not, the dialogue terminates; otherwise
a question policy component finds the best question to ask given current observations.
The stability component is thus an important part of the agent’s architecture: it provides
a termination criterion that prevents the agent from asking unnecessary questions. If, for
example, it is already clear from the initial observations that we are not dealing with
fraud because the citizen simply received a product they did not like, the agent will not
continue to exhaustively inquire [4] about further details of the situation.

The rest of this paper focuses on a more theoretical study of the stability component
of the intake agent. Stability in structured argumentation is a form of dynamic argumen-
tation that was introduced in [14]. Informally, a claim is stable if more information can-
not change the acceptability of the claim, where this acceptability depends on the accept-
ability of arguments for this claim in terms of Dung’s grounded semantics [7]. Detecting
stability is complex: a brute-force approach would involve generating and evaluating all
possible future argumentation setups given new observations, which would require far
too much time in an applied setting. In this paper, we provide some new insights on the
complexity of the stability problem by showing that it is CoNP-hard.

A sound approximation algorithm for stability was provided in [14]. However, the
conditions under which the algorithm is complete were not studied in-depth. When in-
vestigating these conditions, we identified the nontrivial issues of irrelevant labels and
support cycles, in the presence of which the algorithm from [14] does not detect a stable
situation. In this paper, we solve these issues by proposing a new approximation algo-
rithm consisting of an alternative labelling and a preprocessing step. We prove4 that the
refined algorithm has polynomial time complexity and that it is sound. Furthermore, we
specify constraints on the input under which the new algorithm is complete.

Section 2 below specifies the structured argumentation setup for which we formally
define the stability problem in Section 3. In Section 4 we then identify issues with the
algorithm of [14], propose our refined algorithm and study its properties. Section 5 dis-
cusses related work in dynamic argumentation and Section 6 concludes the paper.

3https://nationaal-politielab.sites.uu.nl/estimating-stability-for-efficient-argument-based-inquiry/
4Due to space restrictions, proofs are omitted in this paper. The proofs are available at https://

nationaal-politielab.sites.uu.nl/estimating-stability-for-efficient-argument-based-inquiry/

https://nationaal-politielab.sites.uu.nl/estimating-stability-for-efficient-argument-based-inquiry/
https://nationaal-politielab.sites.uu.nl/estimating-stability-for-efficient-argument-based-inquiry/
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2. Preliminaries

Our argumentation setup is a variation on ASPIC+ [11], albeit simplified in that we only
consider axiom premises, defeasible rules and no preferences. From a theoretical per-
spective, this can be considered to be a limitation; however, from a practical point of
view this simplification makes it more feasible for police employees without background
in formal argumentation to adapt or create rule sets. We add the notion of queryable lit-
erals Q. These literals can be obtained (i.e. added to the knowledge base) by querying
the citizen, thus restricting the possibilities of updating the knowledge base.

Definition 1 (Argumentation Setup). An argumentation setup AS is a tuple AS =
(L,R,Q,K) where:

• L is a finite propositional language, closed under classical negation (¬). The liter-
als will be denoted by lower-case letters. We write a =−b iff a = ¬b or b = ¬a.

• R is a finite set of defeasible rules a1, . . . ,am ⇒ c such that {a1, . . . ,am,c} ⊆ L.
Where r ∈R, ants(r) = {a1, . . . ,am} are the antecedents of r and cons(r) = c is
its consequent. We refer to a rule with consequent c as “a rule for c”.

• Q⊆L is a set of queryable literals, s.t. l ∈Q iff −l ∈Q.
• K ⊆Q is the knowledge base, which must be consistent: if l ∈ K then −l 6∈ K.

Based on an argumentation setup, arguments can be constructed fromR and K.

Definition 2 (Argument). Let AS = (L,R,Q,K) be an argumentation setup. We denote
by Arg(AS) the set of arguments inferred from AS. An argument A ∈ Arg(AS) is:

• an observation-based argument c iff c ∈ K.
The conclusion conc(A) of A is c. The set of subarguments sub(A) of A is {c}.

• a rule-based argument A1, . . . ,Am ⇒ c iff for each i ∈ [1 . . m]: Ai is in Arg(AS)
with conclusion ci and there is a rule r : c1, . . . ,cm⇒ c inR.
The conclusion conc(A) of A is c. The set of subarguments sub(A) of A is
sub(A1)∪ . . .∪sub(Am)∪{A}. The top rule top-rule(A) of A is r.

We refer to an argument with conclusion c as “an argument for c”. We refer to a rule-
based argument with top rule r as “an argument based on r”.

Definition 3 (Attack). Let AS = (L,R,Q,K) be an argumentation setup. For two argu-
ments A,B ∈ Arg(AS) we say that A attacks B on B′ iff A’s conclusion is c, there is a
subargument B′ ∈ sub(B) such that conc(B′) =−c and −c 6∈ K.

Our definition of attack corresponds to rebuttal in ASPIC+ [11]. From Definition 3
it follows directly that observation-based arguments cannot be attacked.

Example 1 (Online trade fraud). Let AS = (L,R,Q,K), visualised in Figure 2, be
an argumentation setup in the domain of online trade fraud. L consists of the literals
{b,sm,sp,rp,rm,u,s, t,sd,rd,d, f} and their negations. Squares represent literals from
L, rounded squares are queryable literals (fromQ) and literals inK are shaded. Rules are
represented by double-lined arrows and attacks as single-lined arrows. Arg(AS) includes
an argument for f based on the rule sd,¬rd,d ⇒ f and an argument for ¬ f based on
b, t⇒¬ f . These arguments attack each other.



July 2020

sm b sp ¬b ¬rp b ¬rm ¬b u b s ¬b

sd ¬rd d

f

b t

¬ f

Figure 2. Example of an argumentation setup AS from the law enforcement domain. b: citizen tried to buy a
product (as opposed to selling a product); sm: citizen sent money; sp: citizen sent product; rp: citizen received
product; rm: citizen received money; u: suspicious url; s: screenshot of payment; t: trusted web shop; sd: citizen
delivered; rd: citizen received delivery; d: deception; f : fraud. Note that the literals b and ¬b are visualised
multiple times and attacks between them are omitted for clarity.

Like in ASPIC+, the evaluation of arguments is done using the semantics of [7].
We choose grounded semantics since it is the most skeptical semantics, which fits the
application in police investigation. We subsequently use the grounded extension to define
the acceptability of literals in an argumentation setup.

Definition 4 (Grounded Extension). Let AS = (L,R,Q,K) be an argumentation setup
and let S ⊆ Arg(AS). S is said to be conflict-free iff there are no A,B ∈ S such that A
attacks B. S defends A ∈ Arg(AS) iff for each B ∈ Arg(AS) that attacks A there is a C ∈ S
that attacks B. S is admissible iff it is conflict-free and defends all its arguments. S is
a complete extension iff it is admissible and contains all the arguments it defends. The
grounded extension G(AS) is the least (w.r.t. ⊆) complete extension.

Definition 5 (Acceptability). Let AS = (L,R,Q,K) be an argumentation setup. The
acceptability of literal l ∈ L given AS is:

• unsatisfiable iff there is no argument for l in Arg(AS);
• defended iff there exists an argument for l in Arg(AS) that is also in the grounded

extension G(AS);
• out iff there exists an argument for l in Arg(AS), but each argument for l in Arg(AS)

is attacked by an argument in the grounded extension G(AS);
• blocked iff there exists an argument for l in Arg(AS), but no argument for l is in

the grounded extension G(AS) and at least one argument for l is not attacked by
an argument in G(AS).

Note that these acceptability statuses are complementary: e.g. if l is not unsatisfiable,
defended or out, then it is blocked. This follows directly from the definition.

Example 2 (Example 1 continued). In argumentation setup AS from Figure 2, G(AS)
contains (unattacked) arguments for sm, b, ¬rp, u, t, sd, ¬rd and d, so these literals are
defended in AS. There are arguments for f and ¬ f in Arg(AS) that attack each other, but
these are not attacked or defended by any argument in G(AS), so f and ¬ f are blocked in
AS. Each other literal l ∈ L is unsatisfiable in AS: there is no argument for l in Arg(AS).

3. Stability

Using Definition 5, we can determine the acceptability status of a literal l ∈ L in a given
argumentation setup AS = (L,R,Q,K). However, by adding more information, l’s ac-
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ceptability status may change. Informally, l is stable in AS if its acceptability status can-
not change by adding any combination of queryables to the knowledge base - provided
that the resulting knowledge base is consistent. Note that we restrict the changes on the
argumentation setup to adding knowledge, since we expect the citizen to attribute only
facts on his/her situation. Next, we define future setups, which specify how information
can be added to AS.

Definition 6 (Future setups). The set of future setups F(AS) of an argumentation setup
AS = (L,R,Q,K) consists of all argumentation setups AS′ = (L,R,Q,K′) withK⊆K′.

Note that the argumentation setup AS always belongs to the set of future setups
F(AS). Further recall from Definition 1 that K′ must be consistent since AS′ is an argu-
mentation setup. Using the notion of future setups, we now define stability.

Definition 7 (Stability). Let AS=(L,R,Q,K) be an argumentation setup. A literal l ∈L
is stable in AS iff there is an acceptability status acc ∈ {unsatisfiable, defended, out,
blocked} such that for each AS′ ∈ F(AS), l is acc in AS′.

Example 3 (Example 2 continued). In our running example, the literal f is stable. By
querying the client agent, we could obtain more information; F(AS) for example contains
an argumentation setup with knowledge base K′ = K∪{¬sp} = {sm,b,¬rp,u, t,¬sp}.
However, adding information does not influence f ’s acceptability status: for each AS′ in
F(AS), f is blocked in AS′. Therefore, f is stable in AS.

Proposition 1. Determining stability is CoNP-hard.

This can be shown by a polynomial-time reduction from the CoNP-complete prob-
lem UNSAT. The full proof is available on the website with additional material.

CoNP-hard problems are generally considered intractable (unless P = NP). Given the
above results and assuming that P 6=NP, there is no exact polynomial-time algorithm that
determines for an arbitrary argumentation setup AS if a literal is stable in AS. This means
that an exact algorithm would need exponential time. Since practical applications require
fast computation for arbitrary argumentation setups, we consider a sound polynomial-
time approximation algorithm in the next section.

4. Approximating stability

A first approximation algorithm for determining stability in formal argumentation was
proposed in [14]. This algorithm assigns a label to literals and rules that it considers to
be stable. Each label relates to one of the four cases of stability: U (unsatisfiable); D
(defended); O (out); or B (blocked). However, the algorithm is not complete: there exist
argumentation setups that are stable but are not labelled as such by the approximation
algorithm. In [14] we gave an example, but no precise specification of argumentation se-
tups for which the algorithm does not recognise stability. In the next subsection, we give
two additional examples which reveal different issues of the method described in [14]. In
Sections 4.2 and 4.3, we present a refined algorithm to solve these issues. Subsequently,
we will show soundness and conditional completeness and study the computational com-
plexity of this refinement in Section 4.4.
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Figure 3. Examples of incompleteness of the basic algorithm from [14].

4.1. Examples of incompleteness basic algorithm

Figures 3a and 3b illustrate two different issues of the algorithm from [14].

Example 4 (Irrelevant label problem). Figure 3a represents an argumentation setup AS
in which q1, q2 and q3 are queryable. q1 is in the knowledge base. There is an argument
for t based on a⇒ t and an argument for ¬t based on b⇒¬t in Arg(AS). So for each
AS′ ∈ F(AS), t is blocked in AS′. However, t is not recognised as being stable by the
algorithm in [14]. The literal q1 and rules q1 ⇒ a and q1 ⇒ b are correctly labelled D,
but the other literals and rules are not labelled by the algorithm. a and b are not labelled
because they may become either defended (if ¬q2 resp. ¬q3 ∈K′) or blocked (if q2 resp.
q3 ∈ K′). As a result, the rules a⇒ t and b⇒ ¬t are not labelled because they may
become either defended or blocked. In all future setups in F(AS), the argument for a is
either defended (if q2 6∈ K′) or blocked (if q2 ∈ K′). Similarly, in every future setup, the
argument for b is either defended (if q3 6∈ K′) or blocked (if q3 ∈ K′). The algorithm
in [14] has a labelling rule Case B literal A stating that “l ∈ L is labelled B iff l ∈Q and
a rule for l and a rule for −l are labelled D or B”. However, this rule does not apply:
although a⇒ t and b⇒ ¬t will be labelled D or B in a future setup in which we have
information about q2 and q3, we do not know the exact label - which is here irrelevant.

We will refer to the issue illustrated in Figure 3a as the irrelevant label problem. It is
caused by the fact that L only assigns a label if there is exactly one possible acceptance
status for all future setups, but does not take into account that some acceptability statuses
are impossible in a future setup. The next example reveals another issue of the basic
algorithm, which we will refer to as the support cycle problem.

Example 5 (Support cycle problem). Figure 3b represents an argumentation setup AS in
which a, b, c and t are literals that are not queryable. As a result, there is no other future
argumentation setup than the current setup: F(AS) = {AS}. There is no argument for t
in Arg(AS), hence t is unsatisfiable for every AS′ ∈ F(AS). However, no rule or literal is
labelled U since the algorithm in [14] only labels a non-queryable literal U if all rules
for this literal are labelled U ; a rule only gets labelled U if at least one antecedent of that
rule is labelled U . Because of this support cycle, there is no place to start labelling.

Due to the irrelevant label problem and the support cycle problem, the algorithm
from [14] fails to recognise the stability of some argumentation setups. We present a
solution to these problems in Sections 4.2 and 4.3.
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4.2. Reasoning with possible future labels

In this section, we present an alternative labelling method that bypasses the irrelevant
label problem by reasoning with possible future labels. Whereas the approximation algo-
rithm presented in [14] relies on a partial labelling function L that assigns at most one la-
bel to each literal in L and rule inR (L :L∪R 7→ {U,D,O,B}where 7→ denotes a partial
function), we propose a labelling L′ that assigns a quadruple of four booleans 〈u,d,o,b〉
to each literal and rule. Each boolean corresponds to an acceptability status. Intuitively,
the truth value of a boolean belonging to a literal or rule represents the possibility that
this literal or rule may become unsatisfiable (u), defended (d), out (o) or blocked (b) in
a future argumentation setup. Similar to the approach in [14], labels of rules depend on
the labels of their antecedent literals and labels of literals depend on the labels of rules
for that literal. Literals and rules are labelled incrementally, starting from queryable lit-
erals and literals for which there is no rule and relabelling literals and rules based on the
resulting new labels, until no new label can be added.

Definition 8 (Quadruple labelling L′). Let AS = (L,R,Q,K) be an argumentation setup.
The labelling function L′ : L∪R → {0,1}× {0,1}× {0,1}× {0,1} assigns a label
〈u,d,o,b〉 to each literal or rule in L∪R. Given a literal or rule x ∈ L∪R, we write
¬u(x) [resp. ¬d(x),¬o(x),¬b(x)] iff the u- [resp. d-, o-, b-] boolean of x’s label is False
and u(x) [resp. d(x),o(x),b(x)] iff the u- [resp. d-, o-, b-] boolean of x’s label is True.
We say that a rule or literal x is labelled stable by L′ iff exactly one of the booleans is
True: L′(x) is 〈1,0,0,0〉, 〈0,1,0,0〉, 〈0,0,1,0〉 or 〈0,0,0,1〉.
Given a literal l ∈ L, L′(l) = 〈u,d,o,b〉 where:
literal cannot become unsatisfiable: ¬u(l) iff:

L-U-a) l ∈ K; or
L-U-b) there is a rule r for l with ¬u(r).

literal cannot become defended: ¬d(l) iff:
L-D-a) −l ∈ K; or
L-D-b) l 6∈ Q and for each rule r for l: ¬d(r); or
L-D-c) l 6∈ Q and there is a rule r′ for −l with ¬u(r′) and ¬o(r′).

literal cannot become out: ¬o(l) iff:
L-O-a) l ∈ K; or
L-O-b) for each rule r for l: ¬d(r), ¬o(r) and ¬b(r); or
L-O-c) l 6∈ Q and for each rule r for l: ¬o(r); or
L-O-d) l 6∈ Q and there is a rule r for l with ¬u(r) and ¬o(r).

literal cannot become blocked: ¬b(l) iff:
L-B-a) l ∈Q; or
L-B-b) for each rule r for l: ¬d(r) and ¬b(r); or
L-B-c) for each rule r for l: ¬b(r) and for each rule r′ for −l: ¬d(r′) and ¬b(r′).
L-B-d) there is a rule r for l with ¬u(r), ¬o(r) and ¬b(r) and for each rule r′ for−l:

¬d(r′) and ¬b(r′).

Given a rule r ∈R, L′(r) = 〈u,d,o,b〉 where:
rule cannot become unsatisfiable: ¬u(r) iff:

R-U-a) for each antecedent l of r: ¬u(l).
rule cannot become defended: ¬d(r) iff:

R-D-a) there is an antecedent l of r with ¬d(l).
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Figure 4. Quadruple labelling example.

rule cannot become out: ¬o(r) iff:
R-O-a) for each antecedent l of r: ¬o(l); or
R-O-b) there is an antecedent l of r with ¬d(l) and ¬o(l) and ¬b(l).

rule cannot become blocked: ¬b(r) iff:
R-B-a) for each antecedent l of r: ¬b(l); or
R-B-b) there is an antecedent l of r with ¬d(l) and ¬b(l).

Example 6. We give some intuition by labelling the AS from Figure 4. Some rules apply
if (the negation of) a literal is in K or Q, e.g. q1 is labelled 〈0,1,0,0〉 by Definition 8
case L-U-a, L-O-b and L-B-a: there is an observation-based argument for q1 that cannot
be attacked in any future setup. The absence of rules for a literal is informative for the
acceptability status as well: e.g. l1 is labelled 〈1,0,0,0〉 by L-D-b, L-O-b/c and L-B-b/c.

Other labels are based on the rules for (the negation of) a literal and propagate prop-
erties of (attacks on) subarguments. For example, q1⇒ l2 is labelled 〈0,1,0,0〉 by R-U-
a, R-O-a and R-B-a and l2 is labelled 〈0,1,0,0〉 by L-U-b, L-O-c/d and L-B-c/d. Some
literals and rules cannot be labelled stable, but still some acceptability status(es) can be
excluded: e.g. the rule q2⇒ q3 is labelled 〈1,1,0,0〉 by case R-O-a and R-B-a.

Example 7 (Alternative labelling Figure 3a). Consider the L′ labelling for the argu-
mentation setup from Figure 3a. q1 is in the knowledge base, so by Definition 8,
L′(q1) = 〈0,1,0,0〉. Then L′(q1 ⇒ a) = L′(q1 ⇒ b) = 〈0,1,0,0〉 by R-U-a, R-O-a and
R-B-a. q2 and q3 are queryable but not in the knowledge base and there are no rules
for q2 or q3, so by Case L-O-b and L-B-a: L′(q2) = L′(q3) = 〈1,1,0,0〉. For the rules
q2⇒¬a and q3⇒¬b, only the d- and u-booleans are True by R-O-a and R-B-a. As a
result, for the literals a and b only the d- and b-booleans are True by L-U-b and L-O-c,
which implies by R-U-a and R-O-a that L′(b⇒ t) = L′(a⇒ t) = 〈0,1,0,1〉. Finally, t is
labelled L′(t) = 〈0,0,0,1〉 (by L-U-b, L-D-c and L-O-c/d), so t is labelled stable by L′.

In Example 7 we saw that t is labelled stable by our labelling function L′, but its
stability was not detected by [14]’s labelling function L. In general, each literal or rule
labelled stable by L is also labelled stable by L′, but L′ covers more stable setups than L.

4.3. Preprocessing

The new labelling proposed in the previous section does not solve the support cycle prob-
lem: if we would apply the labelling L′ from Definition 8 to the argumentation setup
from Figure 3b, all literals l (including literal t) would be labelled 〈1,1,1,1〉. In order
to solve this issue, we add a preprocessing step, which is specified in Algorithm 1. The
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Algorithm 1 Preprocessing step

1: procedure PREPROCESS(L,R,Q,K)
2: Label each literal l s.t. l ∈Q∧−l 6∈ K as 〈1,1,1,1〉
3: Label all other literals as 〈1,0,0,0〉
4: Label each r ∈R as 〈1,0,0,0〉
5: while a label changed in the previous loop do
6: for Rule r inR do
7: if L(r) = 〈1,0,0,0〉 and for each l ∈ ants(r): L(l) 6= 〈1,0,0,0〉 then
8: Label r as 〈1,1,1,1〉
9: Label cons(r) as 〈1,1,1,1〉

idea of this algorithm is that initially, all literals that cannot be in the knowledge base in
a future setup and all rules are labelled 〈1,0,0,0〉 (i.e. unsatisfiable). Then, the algorithm
incrementally removes unsatisfiable labels of rules for which all antecedents are not la-
belled 〈1,0,0,0〉, and of the consequents of these rules, based on the intuition that there
may be an argument based on these rules in a future setup.

Example 8 (Alternative labelling Example 5). We reconsider Figure 3b, assuming that
the preprocessing step has been executed. In Line 3, all literals (a, b, c and t) are labelled
〈1,0,0,0〉. Since the if-statement in Line 7 never returns true, no rule or literal gets
another label, so the while loop is executed only once. After termination of Algorithm 1,
all literals are still (correctly) labelled 〈1,0,0,0〉.

4.4. Properties of the proposed algorithm

In this subsection, we present properties of STABILITY, our proposed algorithm, which
runs PREPROCESS on the argumentation setup and then labels all literals and rules by
repeatedly applying Definition 8. First, we consider STABILITY’s soundness.

Proposition 2 (Soundness stability labelling). Given an argumentation setup AS =
(L,R,Q,K) and labelling L′ after executing the STABILITY algorithm, if a literal l ∈ L
is labelled stable in AS, then l is stable in AS.

Soundness can be proven by systematically analysing all argumentation setups in
which a literal l is labelled stable (e.g. l ∈K or [l 6∈ Q and there is no rule for l inR]) and
proving that l is stable in each of them. Next, we consider completeness. As illustrated
in Example 9, STABILITY is not complete for all argumentation setups.

Example 9 (Example 3 continued). Consider the argumentation setup AS=(L,R,Q,K)
where L, R and Q are as in Figure 2, but K = {¬sm,rm}. STABILITY does not label f
stable: it expects a future argument for f based on sd,¬rd,d⇒ f , where the argument for
sd is based on sp,¬b⇒ sd and the argument for ¬rd is based on ¬rp,b⇒ rd. However,
this argument would require both b and ¬b to be in the knowledge base, which violates
the consistency criterion. In fact, for each AS′ in F(AS) there is no argument for f in
Arg(AS′), so f should be labelled 〈1,0,0,0〉.

Example 9 shows that there are argumentation setups where the STABILITY algo-
rithm wrongfully takes the possibility into account that there exists an argument for a
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literal in a future argumentation setup. Specifically, this issue is caused by inconsistent
potential arguments, which we define next.

Definition 9 (Potential argument). Let AS = (L,R,Q,K) be an argumentation setup. A
potential argument Ap inferred from AS is:

• c iff c ∈Q and −c 6∈ K. prem(Ap) = {c}; conc(Ap) = c; and sub(Ap) = {c}.
• A1, . . . ,Am⇒ c iff there is a rule c1, . . . ,cm⇒ c inR and for each i ∈ [1 . . m]: Ai is

a potential argument inferred from AS and conc(Ai) = ci. prem(Ap) = prem(A1)∪
. . .∪prem(Am); conc(Ap) = c; and sub(Ap) = sub(A1)∪ . . .∪sub(Am)∪{A}.

We denote the set of potential arguments by P(AS). Given some Ap,Bp ∈ P(AS), Ap p-
attacks Bp iff there is a B′ ∈ sub(Bp) s.t. conc(Ap) =−conc(B′) and −conc(B′) 6∈ K;
Ap is inconsistent with Bp iff {a,−a} ∈ prem(Ap)∪prem(Bp) for some a ∈ L.

Note that, for any argumentation setup AS, each argument inferred from AS or some
future setup is a potential argument in P(AS). However, there may be a potential argu-
ment Ap ∈ P(AS) such that there is no AS′ ∈ F(AS) with Ap ∈ Arg(AS′), but then Ap must
be inconsistent with itself, like in Example 9. Example 10 reveals another issue, where
stability is not detected due to an inconsistency of two different potential arguments.

Example 10 (Mutual inconsistency issues). Given the argumentation setup AS illustrated
in Figure 5, for each AS′ = (L,R,Q,K′) in F(AS), l1 is blocked in AS′: if ¬q2 6∈ K′
then there is an argument for l1 based on q2⇒ l1; otherwise there is an argument for l1
based on ¬q2⇒ l1. However, l1 is not labelled 〈0,0,0,1〉 because STABILITY wrongfully
anticipates a future setup AS′ in which each argument for l1 is attacked by an argument in
G(AS′) (thus o(l1)). For the same reason, ¬l1 is labelled d(¬l1) and therefore L′(¬l1) 6=
〈0,0,0,1〉, although ¬l1 is blocked in each AS′ ∈ F(AS).

The issues illustrated in Examples 9 and 10 can be generalised to the following two
situations. Given an argumentation setup AS = (L,R,Q,K) and a literal l ∈ L:

• l is inconsistently supported in AS iff there are Ap,Bp ∈ P(AS) such that
conc(Ap) = conc(Bp) = l and Ap is inconsistent with Bp.

• l is inconsistently attacked in AS iff there is a Cp ∈ P(AS) such that conc(Cp) = l
and there are Ap,Bp ∈ P(AS) such that Ap p-attacks Cp, Bp p-attacks Cp and Ap is
inconsistent with Bp.

If a potential argument is inconsistent with itself, its conclusion l can be incorrectly
labelled d(l) or b(l) (e.g. f in Example 9). Similarly, if two potential arguments with the
same conclusion are inconsistent, their conclusion l can be incorrectly labelled o(l) (e.g.
l1 in Example 10). Moreover, if l is inconsistently attacked, l may be incorrectly labelled
d(l) (e.g. ¬l1 in Example 10) or b(l). Otherwise, l is labelled stable if it is stable in AS.

Proposition 3 (Conditional completeness stability labelling). Given an argumentation
setup AS = (L,R,Q,K) and a labelling L′ after executing STABILITY. If l ∈ L is stable
in AS and l is not inconsistently supported or attacked, then l is labelled stable by L′.

Finally, the proposed algorithm runs in polynomial time, which makes it suitable for
practical applications such as human-computer inquiry dialogues.

Proposition 4. The time complexity of STABILITY is O(|L|2 · |R|+ |L| · |R|2).
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¬l1
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D
D/O D/U D

Figure 5. For each AS′ ∈ F(AS): l1 and ¬l1 are blocked in AS′, but not labelled as such due to inconsistent
support (l1) and attack (¬l1).

5. Related work

We study stability [14]: given a specific structured argumentation setting, can adding in-
formation change the acceptability status of some propositional formula? This is a rela-
tively new task within dynamic argumentation, which studies the acceptability of (sets of)
arguments or their conclusions in relation to changes on the argumentation framework.
Research on dynamic argumentation includes work on the impact of a change opera-
tion [5,1], enforcement [2,6], resolution [10] and the relation with belief revision [8,13].

Most research on dynamic argumentation, e.g. [2,5,6], only considers the effect of
changes in the abstract framework, such as adding an argument. This approach does not
take into account dependencies between arguments. For example, adding a new argument
A often introduces more arguments having A as a subargument. Conversely, we study the
effect of changes in the underlying structured argumentation framework.

None of the existing work in structured dynamic argumentation specifically studies
stability. We briefly discuss some related research. [10] study resolutions in structured
argumentation: they show how the acceptability of arguments changes due to a change
of preferences in the underlying structured argumentation framework. Another related
study [13] shows how the acceptability of a specific set of arguments can be altered by
a minimal number of changes on the premises and/or rules in an argumentation frame-
work, relating dynamic argumentation to belief revision. However, they do not focus on a
specific task, such as stability; they do not consider computational complexity or provide
an efficient (approximation) algorithm. One of the few papers that take computational
complexity into account is [1]. The authors propose an efficient algorithm to minimise
re-computations after a change in a DeLP program. However, whereas they study accept-
ability status after a specific change, we study the status after any possible change in the
structured argumentation framework.

Finally, [9] apply a similar strategy to ours for efficiently determining the accept-
ability status of literals: they create a graph representing (the relation between) literals
and rules and incrementally label its nodes and edges. However, they only determine the
current acceptability status without considering changes.

6. Discussion and conclusion

We have studied the task of detecting stability: given a specific structured argumentation
setup, based on a variation on ASPIC+, can adding information result in a changed ac-
ceptability status of a specific literal? We have shown that the task is CoNP-hard. This
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is problematic in practical applications, such as identifying the termination criterion in
human-computer inquiry dialogue. We proposed an algorithm for estimating stability
that improves on the algorithm in [14]. We have shown that the refined algorithm is sound
and runs in polynomial time. Thanks to these properties, the algorithm has been taken
into use as part of an agent handling intake of fraud reports at the Dutch National Police
– we provide an English demo that also visualises the agent’s stability component.

There are examples of argumentation setups for which the algorithm does not detect
that a literal is stable; in our application, this can result in the agent asking unnecessary
questions. This issue could be resolved by a further refinement of the algorithm, which
lists the knowledge bases K′ of all future setups and checks that each K′ is consistent.
However, such an algorithm would have exponential time complexity.

In future work, we plan to extend the argumentation framework and the allowed
updates. Furthermore, our demo applies a heuristic to select relevant questions; we plan
to specify this formally. Finally, we will extensively evaluate the fraud intake agent.
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