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Abstract. We explore the computational complexity of stability and relevance in
incomplete argumentation frameworks (IAFs), abstract argumentation frameworks
that encode qualitative uncertainty by distinguishing between certain and uncertain
arguments and attacks. IAFs can be specified by, e.g., making uncertain arguments
or attacks certain; the justification status of arguments in an IAF is determined on
the basis of the certain arguments and attacks. An argument is stable if its justifi-
cation status is the same in all specifications of the IAF. For arguments that are not
stable in an IAF, the relevance problem is of interest: which uncertain arguments
or attacks should be investigated for the argument to become stable? We redefine
stability and define relevance for IAFs and study their complexity.
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1. Introduction

Computational argumentation is an important research field in artificial intelligence, con-
cerning reasoning with incomplete or inconsistent information [1]. A central concept
are argumentation frameworks (AFs): a set of arguments and an attack relation between
them [2]. Given an AF and so-called semantics, one can determine extensions: sets of ar-
guments that can collectively be considered to be acceptable. Based on these extensions,
each argument has at least one justification status (in terms of e.g. labels like IN, OUT

and UNDEC). However, in practice, argumentation is a dynamic process in which not all
arguments may be known in advance. Incomplete argumentation frameworks (IAFs) are
designed to handle this dynamic process by extending AFs to allow for both certain and
uncertain arguments and attacks [3,4,5,6]. In this paper, we study two problems in IAFs
and their complexity for various semantics: stability and relevance.

Detecting stability was initially introduced for the ASPIC+ framework in [7] and
subsequently studied for structured and abstract argumentation settings in [8,6]. Infor-
mally, an argument is stable if more information cannot change its justification status.
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Stability detection has practical applications, for instance as a termination criterion for
argumentative dialogue agents: in the agent architecture for inquiry proposed in [8], sta-
bility detection prevents the agent from asking unnecessary questions. In addition, [6]
proposes an application of stability detection in negotiating agents, to recognise situa-
tions in which an agent should stop negotiating and accept its opponent’s offer.

For situations in which the argument of interest is not stable in the given IAF, a
natural question would be: which uncertainties should we resolve in order to reach a
point where the argument is stable? In other words: which uncertain arguments or attacks
are still relevant for the justification status? Adding relevance to an inquiry/negotiation
process ensures that the questions that are asked contribute to reaching stability.

The contribution of this paper is the extensive study of both stability and relevance
in the context of IAFs. Specifically, first we (re)define stability on IAFs, considering
not only IN, but also OUT and UNDEC justification statuses. This results in a more fine-
grained notion of stability than an earlier definition in [6]. Second, we present precise
complexity results for stability of all these justification statuses in grounded, complete,
stable and preferred semantics, refining preliminary results in [6]. Third, we define a no-
tion of relevance in the context of reaching stability in IAFs. Finally, we present prelim-
inary complexity results for the introduced relevance detection problem.

The paper is structured as follows. In Section 2, we provide the necessary prelim-
inaries. In Section 3, we study the complexity of identifying the justification status of
an argument and use these results in our complexity analysis of the stability problem.
We then introduce the relevance problem for IAFs in Section 4 and provide complexity
results. Related work is discussed in Section 5; we conclude in Section 6.

2. Preliminaries

In this section, we recall the most important notions from abstract argumentation and
the considered semantics [2] as well as incomplete argumentation frameworks [3,4,5,6]
and their specifications. Finally, we give a brief introduction to the polynomial hierarchy,
which is required for our complexity study.

2.1. Argumentation frameworks and semantics

An argumentation framework ⟨A,R⟩ (AF) consists of a finite set A of arguments and a
binary attack relation R⊆A×A on them, where (A,B) ∈ R indicates that argument A
attacks argument B. The evaluation of arguments is done using the semantics of [2].

Definition 1 (Extension-based semantics). Let AF = ⟨A,R⟩ be an AF and S ⊆A. Then:

• S is conflict-free iff for each X ,Y ∈ S : (X ,Y ) ̸∈ R;
• X ∈ A is acceptable with respect to S iff for each Y ∈ A such that (Y,X) ∈ R,

there is a Z ∈ S such that (Z,Y ) ∈R;
• S is an admissible set iff S is conflict free and X ∈ S implies that X is acceptable

with respect to S;
• S is a complete extension (CP) iff S is admissible and for each X: if X ∈ A is

acceptable with respect to S then X ∈ S;
• S is a preferred extension (PR) iff it is the set inclusion maximal admissible set;



• S is the grounded extension (GR) iff it is the set inclusion minimal complete ex-
tension; and

• S is a stable extension (ST) iff it is complete and attacks all the arguments in A\S.

2.2. Incomplete argumentation frameworks

Incomplete argumentation frameworks (IAFs) are an extension to AFs, initially proposed
as partial AFs in [3] and later studied as IAFs in e.g. [4,5,6]. In an IAF, the set of argu-
ments and attacks is split into two disjoint parts: a certain part (A and R) and an uncer-
tain part (A? and R?). For the uncertain elements, it is not known whether they are part
of the argumentation framework or not. They may be added in the future, for example
because more information is acquired in an inquiry dialogue, or removed, for example
because after investigation, this element turned out not to be present in the given setting.

Definition 2 (Incomplete argumentation framework). An incomplete argumentation
framework is a tuple I = ⟨A,A?,R,R?⟩, where A∩A? = /0, R∩R? = /0 and:

• A is the set of certain arguments;
• A? is the set of uncertain arguments;
• R⊆ (A∪A?)× (A∪A?) is the certain attack relation; and
• R? ⊆ (A∪A?)× (A∪A?) is the uncertain attack relation.

An IAF can be specified by obtaining more information about the uncertain part.

Definition 3 (Specification). Given an IAF I = ⟨A,A?,R,R?⟩, a specification is an IAF
I ′ = ⟨A′,A?′,R′,R?′⟩, where:

• A⊆A′ ⊆A∪A?;
• R⊆R′ ⊆R∪R?;
• A?′ ⊆A?;
• R?′ ⊆R?.

We denote all possible specifications for I by F(I). Note that A′ ∩A?′ = /0 and R′ ∩
R?′ = /0 because I ′ is an IAF.

Since the semantics of [2] are defined on AFs, we define the certain projection of an
IAF, which is an AF consisting of only the IAF’s certain arguments and attacks.

Definition 4 (Certain projection). Given an IAF I = ⟨A,A?,R,R?⟩, the certain projec-
tion is the argumentation framework AF = ⟨A,R∩ (A×A)⟩.

Note that our definition of specification is similar to the notion of completion used in
related work on IAFs [4,5]. Intuitively, a completion is a certain projection of a specifi-
cation and is therefore not suitable for keeping track of the uncertain elements. Since the
development of uncertain elements is essential for defining and studying the relevance
problem (see Section 4), we use the notion of specification rather than completion.

2.3. The polynomial hierarchy

The polynomial hierarchy [9] is a hierarchy of complexity classes above NP defined
using oracle machines, i.e. Turing machines that are allowed to call a subroutine (oracle),



deciding some fixed problem in constant time. For a class of decision problems C and a
class X defined by resource bounds, X C denotes the class of problems decidable on a
Turing machine with a resource bound given by X and an oracle for a problem in C.

Based on these notions, the sets Σ
p
k and Π

p
k are defined as follows: Σ

p
0 = Π

p
0 = ∆

p
0 =

P, Σ
p
k+1 = NPΣ

p
k and Π

p
k+1 = CoNPΣ

p
k . The canonical complete problem for Σ

p
k is k-

QBF, which is the problem of deciding whether the quantified boolean formula with k
alternating quantifiers, starting with an existential quantifier, is true for a formula Φ – for
example, deciding if ∃Xs.t. ∀Y : Φ[X ,Y ] = True is Σ

p
2 -complete. The complement of a

k-QBF problem, denoted by co-k-QBF, is complete for Π
p
k .

3. Justification status and stability

In order to define and study stability and relevance, we need a definition of justification
status. Given an AF ⟨A,R⟩, an argument A and a semantics σ , A’s justification status
can be determined by either considering all σ -extensions (sceptical) or at least one σ -
extension of the AF (credulous). In this context, an argument can be IN (part of all/some
σ -extensions); OUT (attacked by all/some σ -extensions), or UNDEC (otherwise) [10].

Definition 5 (Argument justification status). Let AF = ⟨A,R⟩ be an argumentation
framework and σ some semantics in {GR,CP, PR, ST}. Let A be some argument in A.

• A is σ -sceptical-IN (resp. σ -credulous-IN) iff A belongs to each (resp. some) σ -
extension of AF;

• A is σ -sceptical-OUT (resp. σ -credulous-OUT) iff for each (resp. some) σ -
extension S of AF, A is attacked by some argument in S;

• A is σ -sceptical-UNDEC (resp. σ -credulous-UNDEC) iff for each (resp. some) σ -
extension of AF, A is not in S and not attacked by any argument in S.

The justification statuses that we consider in this paper are {GR,CP, PR, ST} ×
{sceptical,credulous}×{IN,OUT,UNDEC}. Based on these justification statuses, we can
now define stability:

Definition 6 (Stability on IAFs). Given an IAF I = ⟨A,A?,R,R?⟩, a certain argument
A ∈ A and some justification status j, A is stable- j w.r.t. I iff for each specification
I ′ = ⟨A′,A?′,R′,R?′⟩ in F(I), A is j w.r.t. the certain projection of I ′.

Note that whereas the sceptical stability variants are mutually exclusive, this does
not apply for the credulous stability variants, where an argument may have multiple
stability statuses at the same time. Consider the following example:

Example 1. Let I = ⟨A,A?,R,R?⟩ be an incomplete argumentation framework with
A= {A,B}, A? =R? = /0, R= {(A,B),(B,A)}; note that F(I) = {I}. Both A and B are
stable-CP-credulous-IN, stable-CP-credulous-OUT and stable-CP-credulous-UNDEC. For
σ ∈ {ST, PR}, both A and B are stable-σ -credulous-IN and stable-σ -credulous-OUT. On
the other hand, for semantics σ ∈ {CP, ST, PR}, A and B are not stable-σ -sceptical-IN,
-OUT or -UNDEC.



An alternative definition of stability on IAFs has been proposed before in [6], but
this definition only takes the IN status of arguments into account. Since other justifica-
tion statuses are not studied, it is not possible to distinguish for example situations in
which the justification status of an argument is UNDEC in each certain projection from
situations where the justification status is always either OUT or UNDEC. Our definition
of stability on IAFs is more fine-grained as it also includes OUT- and UNDEC-stability.
In addition, we will provide precise complexity results, refining preliminary complexity
bounds from [6].

We formulate the identification of justification and stability statuses as decision
problems:

j-JUSTIFICATION

Given: An argumentation framework ⟨A,R⟩ and an argument A ∈ A
Question: Does A’s justification status in ⟨A,R⟩ equal j?

j-STABILITY

Given: An incomplete argumentation framework ⟨A,A?,R,R?⟩, a justification
status j and an argument A ∈ A

Question: Does A’s stability status w.r.t. ⟨A,A?,R,R?⟩ equal stable- j?

For some variants of the stability problem, we can directly use complexity results
from earlier work, in particular the results on necessary sceptical and credulous accep-
tance presented in [5]. Specifically, for a given semantics σ ∈ {GR,CP, PR, ST}, an ar-
gument is stable-σ -sceptical-IN iff it is necessary sceptically accepted w.r.t. the corre-
sponding IAF; similarly, the set of stable-σ -credulous-OUT arguments coincides with the
necessary credulously accepted arguments (see Section 5 for a discussion). See Table 1
for an overview of these results.

σ c/s status JUSTIFICATION STABILITY RELEVANCE

ST c IN/OUT NP-c [11,12] Π
p
2 -c [5]

ST c UNDEC Trivial (no) Trivial (no)
ST s IN/OUT CoNP-c [11] CoNP-c (Πp

2 -c) [5]
ST s UNDEC CoNP-c [11] (Trivial (no)) CoNP-c (Trivial (no))
CP c IN/OUT NP-c [11,12] Π

p
2 -c [5]

CP c UNDEC P-c CoNP-c
CP s IN/OUT P-c [2] CoNP-c [5] NP-c
CP s UNDEC CoNP-c CoNP-c
GR c IN/OUT P-c [2] CoNP-c [5] NP-c
GR c UNDEC P-c CoNP-c
GR s IN/OUT P-c [2] CoNP-c [5] NP-c
GR s UNDEC P-c CoNP-c
PR c IN/OUT NP-c [11,12] Π

p
2 -c [5]

PR c UNDEC ΣΣΣ
ppp
222 -c ΠΠΠ

ppp
333 -c

PR s IN/OUT Π
p
2 -c [13] Π

p
2 -c [5]

PR s UNDEC CoNP-c CoNP-c
Table 1. Overview of all complexity results related to this paper. If a reference is specified, this complexity
result is trivial from an earlier result in the literature. New results are printed bold; their proofs can be found in
the appendix. Results for ST-sceptical-existence justification and stability are given in parentheses.



The complexity of OUT-STABILITY has not been studied, but can be derived from
the complexity of identifying IN-STABILITY by a reduction from the corresponding IN-
JUSTIFICATION problems. In the following lemma, we show that these complexities are
the same for each of the semantics considered in this paper:2

Lemma 1. For any given σ ∈ {GR,CP, PR, ST} and c ∈ {sceptical,credulous}, the com-
plexity of σ -c-OUT-STABILITY equals the complexity of σ -c-IN-STABILITY.

A similar result exists for IN-JUSTIFICATION and OUT-JUSTIFICATION. The results
for UNDEC-JUSTIFICATION can be found in Table 1 and the appendix. The complexity
of UNDEC-STABILITY cannot be derived in a general way from e.g. IN-STABILITY: the
approach depends on the chosen semantics. We can however provide a general upper
bound based on the complexity of UNDEC-JUSTIFICATION:

Proposition 1 (Upper bound j-STABILITY). Given an IAF I = ⟨A,A?,R,R?⟩, a certain
argument A ∈ A and a justification status j, if the complexity of j-JUSTIFICATION in
⟨A,R⟩ is C, the j-STABILITY problem given A and I is in CoNPC .

Proof. In a negative instance (I,A) of j-STABILITY, there is some I ′ ∈ F(I) such that
A is not j in the certain projection of I ′. A polynomial-size certificate for this instance
would for example be a specification I ′ = ⟨A′, /0,R′, /0⟩ in F(I) such that A is not j in
AF′ = ⟨A′,R′∩ (A′×A′)⟩. Verification that I ′ ∈ F(I) can be done in polynomial time;
the j-justification status check of A in AF′ is done by calling a C oracle.

Note that the complexity of identifying the stability or justification status for UN-
DEC statuses may be higher or lower than the complexity of identifying the IN or
OUT status. For example, for ST semantics the credulous JUSTIFICATION and STABIL-
ITY identification of the UNDEC status is trivial: under ST semantics arguments are ei-
ther in the extension or attacked by the extension, but identifying the IN/OUT status is
NP (JUSTIFICATION) and even in Π

p
2 (STABILITY). On the other hand, PR-credulous-

UNDEC-JUSTIFICATION is on a higher level in the polynomial hierarchy than PR-
credulous-IN-JUSTIFICATION: while PR-credulous-IN-JUSTIFICATION is in NP (since
verification of a positive instance can be done in polynomial time, given an admissi-
ble set containing the argument as a certificate), PR-credulous-UNDEC-JUSTIFICATION
is Σ

p
2 -hard as it can be reduced from 2-QBF.
For other semantics, the complexity of UNDEC-STABILITY does not differ from the

IN-STABILITY complexity. This is for example the case for GR semantics and CP seman-
tics for the sceptical justification status. In order to prove this, we next give a reduction
from UNSAT (co-1-QBF), which is based on the reduction from [5, Definition 14] and
illustrated in the black part of Figure 1.

Definition 7 (Reduction). Let (φ ,X) be an instance of 1-QBF or co-1-QBF and let φ =∧
i ci, where ci =

∨
j α j for each clause ci in φ and α j are the literals over X that occur

in clause ci. We define the corresponding IAF for this instance as ⟨A,A?,R, /0⟩, where:

• A= {xi,xi | xi ∈ X}∪{ci | ci ∈ φ}∪{φ ,φ};
• A? = {gi | xi ∈ X};

2Proofs of omitted results in the remainder of the paper can be found in the online appendix https://www.

uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs.

https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs
https://www.uu.nl/onderzoek/ai-labs/nationaal-politielab-ai/stability-relevance-iafs


• R = {(gi,xi) | xi ∈ X}∪{(xi,xi) | xi ∈ X}∪{(xk,ci) | xk ∈ ci}∪{(xk,ci) | ¬xk ∈
ci}∪{(ci,φ) | ci ∈ φ}∪{(φ ,φ),(φ ,φ)}.

g1 g2 g3

x1 x2 x3x1 x2 x3

c1 c2

φφ χ χ

Figure 1. Visualisation of the IAF created for the clauses c1 = x1 ∨¬x2 and c2 = x2 ∨¬x3 using the reductions
of Definition 7, only the black parts of the figure and Definition 11, also including the gold/gray part. We use
this reduction for GR, CP and sceptical PR semantics.

The reduction is used in the proof of the following proposition.

Proposition 2. GR-sceptical-UNDEC-STABILITY, GR-credulous-UNDEC-STABILITY
and CP-credulous-UNDEC-STABILITY are CoNP-complete.

Proof sketch. Let (φ ,X) be a co-1-QBF (UNSAT) instance and let I = ⟨A,A?,R,R?⟩ be
the IAF according to Definition 7. As GR semantics results in a single extension, which
is the intersection of all CP extensions, the problems GR-sceptical-UNDEC-STABILITY,
GR-credulous-UNDEC-STABILITY and CP-credulous-UNDEC-STABILITY coincide. The
argument φ can only be stable-UNDEC if for each specification of I, the argument φ

is OUT, which can only be the case if there is at least one clause in φ such that the
corresponding argument for ci is IN. Thus the following items are equivalent:

1. (φ ,X) is a positive UNSAT instance;
2. the argument for φ is stable-GR-sceptical-UNDEC in I;
3. the argument for φ is stable-GR-credulous-UNDEC in I;
4. the argument for φ is stable-CP-credulous-UNDEC in I.

CoNP-hardness from UNDEC-STABILITY follows from CoNP-hardness of UNSAT.
From Proposition 1 and the fact that the corresponding JUSTIFICATION problems are in
P, we conclude CoNP-completeness.

In the following proposition, we consider the sceptical variants of the UNDEC-
STABILITY under CP and PR semantics.

Proposition 3. CP-sceptical-UNDEC-STABILITY and PR-sceptical-UNDEC-STABILITY
are CoNP-complete.

Proof sketch. CP-sceptical-UNDEC-STABILITY and PR-sceptical-UNDEC-STABILITY are
in CoNP, since negative instances (I,A) can be verified in polynomial time given a cer-
tificate (AF′,S) such that I ′ ∈ F(I), AF′ is the certain projection of I ′, A ∈A and S is an
admissible set of AF′ containing either A itself or an argument attacking A. For hardness,
note that the corresponding (CoNP-hard) JUSTIFICATION problems can be reduced to
these STABILITY problems, leaving the uncertain part empty.



Proposition 4 states that the PR-credulous-UNDEC-STABILITY problem is on the
third level of the polynomial hierarchy. For the proof, we refer to the appendix.

Proposition 4. PR-credulous-UNDEC-STABILITY is Π
p
3 -complete.

Finally, we consider UNDEC-STABILITY under ST semantics. Recall from Defini-
tion 1 that for each ST extension S of an AF, each argument in AF is either in S or attacked
by some argument in S. Consequently, an argument can only be stable-ST-sceptical-
UNDEC if the AF has no ST extension. We use this property in the following proposition:

Proposition 5. ST-sceptical-UNDEC-STABILITY is CoNP-complete.

Proof sketch. The problem is in CoNP, as a no-instance (I,A) can be verified in polyno-
mial time given a certificate (AF′,S) such that I ′ ∈ F(I), AF′ is the certain projection of
I ′ and S is a ST extension of AF′. If S is a ST extension then each argument in A is ei-
ther in S or attacked by S; therefore no argument can be stable-ST-sceptical-UNDEC w.r.t.
I. For hardness, we can reduce from the CoNP-complete problem ST-sceptical-UNDEC-
JUSTIFICATION.

This result for sceptical acceptance may feel counterintuitive. Therefore, we con-
sider an alternative version of justification and stability (based on [14]) for ST semantics,
in which it is assumed that a ST extension exists.

Definition 8 (Sceptical-existent justification). Given an argumentation framework AF =
⟨A,R⟩, argument A ∈A and label LAB ∈ {IN,OUT,UNDEC}, A is ST-sceptical-existent-
LAB w.r.t. AF iff AF has at least one ST extension and A is ST-sceptical-LAB in AF.

As no AF has a ST extension S in which some argument is neither in S, nor attacked
by any argument in S, ST-sceptical-existent-UNDEC-STABILITY is False for all inputs.
The same holds for ST-credulous-UNDEC-STABILITY, so these problems are trivial:

Proposition 6. ST-credulous-UNDEC-STABILITY and ST-sceptical-existent-UNDEC-
STABILITY are trivial.

4. Relevance

For IAFs in which a given argument is not stable, a natural follow-up question would
be which uncertainties should be resolved in order to reach a point where the argument
is stable: these uncertainties are relevant to investigate in the given IAF. In this section,
we will define the problem of relevance and study its complexity. First, we give some
intuition on the notion of relevance in the context of stability in the following example.

Example 2. Let I = ⟨A,A?,R,R?⟩ be the IAF illustrated in Figure 2, where only ar-
guments A and C are certain and let j be GR-sceptical-IN; suppose that we want to
know if argument A is j-stable. A is not j-stable in I, but it will become j-stable in
each I ′ ∈ F(I) such that I ′ = ⟨A′,A?′,R′,R?′⟩ and D /∈A′∪A?′ or E ∈A′. Therefore,
it would be relevant to investigate if D can be removed from the uncertain arguments
and/or if E can be added to the certain arguments. Note that investigation of B does not
contribute towards a stable situation and therefore would not be relevant.



A

B C

D E

Figure 2. Visualisation of IAF ⟨A,A?,R,R?⟩ used to illustrate the definition of relevance. In this figure,
certain arguments in A are depicted as nodes with solid borders (i.e. A and C), while uncertain arguments in
A? have dashed borders (i.e. B, D and E). The arrows between them correspond to attacks in R.

Before proceeding to a formal definition of relevance that matches the intuitions in
the example above in Definition 10, we define the notion of minimal stable specifications.

Definition 9 (Minimal stable- j specification). Given an IAF I = ⟨A,A?,R,R?⟩, a cer-
tain argument A ∈ A and a justification status j, a minimal stable- j specification for A
w.r.t. I is a specification I ′ in F(I) such that A is stable- j in I ′ and there is no specifi-
cation I ′′ in F(I) such that A is stable- j in I ′′, I ′′ ̸= I ′ and I ′ ∈ F(I ′′).

Intuitively, the minimal stable- j specification for A is a specification in which A is
stable- j, while A would not be stable- j in any specification with more uncertain elements.

Example 3. Reconsider the IAF I = ⟨A,A?,R,R?⟩ from Example 2:

• There are two minimal stable-GR-sceptical-IN specifications for A w.r.t. I. These
are ⟨{A,C,E},{B,D},R,R?⟩ and ⟨{A,C},{B,E},R,R?⟩;

• There are three specifications for A w.r.t. I for which A becomes stable-GR-
sceptical-OUT: I1 = ⟨{A,C,D},{B},R,R?⟩, I2 = ⟨{A,C,D}, /0,R,R?⟩ and I3 =
⟨{A,B,C,D}, /0,R,R?⟩. Only I1 is minimal, because both I2 and I3 are in F(I1);

• None of the specifications is minimal stable-GR-sceptical-UNDEC.

Using the notion of minimal stable- j specifications, we can now define j-RELEVANCE.

Definition 10 ( j-RELEVANCE). Given an IAF I = ⟨A,A?,R,R?⟩, an argument A ∈ A,
an uncertain argument or attack U ∈ A? ∪R? and a justification status j,

• Addition of U is j-relevant for A w.r.t. I iff there is a minimal stable- j specification
I ′ = ⟨A′,A?′,R′,R?′⟩ for A w.r.t. I such that U ∈ A′∪R′; and

• Removal of U is j-relevant for A w.r.t. I iff there is a minimal stable- j specification
I ′ = ⟨A′,A?′,R′,R?′⟩ for A w.r.t. I such that U /∈ A′∪A?′∪R′∪R?′.

In other words, addition of an uncertain element U is j-relevant if a minimal stable- j
specification can be reached by moving U from the certain to the uncertain part of the
IAF I; and removal of U is j-relevant if completely removing U from I, possibly in
combination with other actions, leads to a minimal stable- j specification.

Example 4. Recall from Example 3 that only I1 = ⟨{A,C,D},{B},R,R?⟩ is a minimal
stable-GR-sceptical-OUT specification for A w.r.t. I. Therefore, only addition of D and
removal of E are GR-sceptical-OUT-relevant for A w.r.t. I.

Like for justification and stability status, we formulate the identification of j-
RELEVANCE as a decision problem:



j-RELEVANCE of action a
Given: An incomplete argumentation framework ⟨A,A?,R,R?⟩, a justification

status j, an action a ∈ {addition,removal}, an argument A ∈ A and an
uncertain argument or attack U ∈ A? ∪R?.

Question: Is a of U j-relevant for A w.r.t. ⟨A,A?,R,R?⟩?

The following lemma, proven in the appendix, shows that the relevance of adding
or removing an uncertain element can be validated by checking the justification status
of the certain projections of two particular future specifications. This property will be
useful for proving an upper bound on j-RELEVANCE.

Lemma 2. Given an IAF I = ⟨A,A?,R,R?⟩, a certain argument A ∈A and a justifica-
tion status j:

1. For each U ∈ A?, addition of U is j-relevant for A w.r.t. I iff there exists some
I ′ = ⟨A′,{U},R′, /0⟩ ∈ F(I) such that A is not j in the certain projection of I ′,
while A is j in the certain projection of ⟨A′∪{U}, /0,R′, /0⟩.

2. For each U ∈ R?, addition of U is j-relevant for A w.r.t. I iff there exists some
I ′ = ⟨A′, /0,R′,{U}⟩ ∈ F(I) such that A is not j in the certain projection of I ′,
while A is j in the certain projection of ⟨A′, /0,R′∪{U}, /0⟩.

3. For each U ∈ A?, removal of U is j-relevant for A w.r.t. I iff there exists some
I ′ = ⟨A′,{U},R′, /0⟩ ∈ F(I) such that A is j in the certain projection of I ′, while
A is not j in the certain projection of ⟨A′∪{U}, /0,R′, /0⟩.

4. For each U ∈ R?, removal of U is j-relevant for A w.r.t. I iff there exists some
I ′ = ⟨A′,{U},R′, /0⟩ ∈ F(I) such that A is j in the certain projection of I ′, while
A is not j in the certain projection of ⟨A′, /0,R′∪{U}, /0⟩.

In the following proposition, we use the results from Lemma 2 to prove a general
upper bound on the complexity of j-RELEVANCE.

Proposition 7 (Upper bound j-RELEVANCE). Given an IAF I = ⟨A,A?,R,R?⟩, a cer-
tain argument A ∈ A, an uncertain argument or attack U ∈ A? ∪R? and a justification
status j, if the complexity of deciding j’s justification status in ⟨A,R⟩ is C, then an upper
bound on the problem of deciding if addition and/or removal of U is j-relevant for A
w.r.t. I is NPC .

In order to prove a lower bound of j-RELEVANCE for GR and CP sceptical semantics,
we use the following reduction. This reduction is illustrated in Figure 1 in gold.

Definition 11 (Reduction relevance). Let (φ ,X) be an instance of 1-QBF or co-1-QBF
let φ =

∧
i ci and ci =

∨
j α j for each clause ci in φ , where α j are the literals over X that

occur in clause ci. Let ⟨A,A?,R, /0⟩ be the reduction from Definition 7 of this instance.
We define the corresponding IAF for this instance as ⟨A′,A?′,R′, /0⟩, where A′ = A∪
{χ}; A?′ =A? ∪{χ}; and R′ =R∪{(χ,χ),(χ,φ)}.

Using the reduction above, we can now give tight complexity bounds for GR and CP
semantics for the sceptical justification status.

Proposition 8. GR-sceptical-IN-RELEVANCE, GR-credulous-IN-RELEVANCE and CP-
sceptical-IN-RELEVANCE are NP-complete.



Proof sketch. Given an instance of 1-QBF (SAT), let I be the IAF constructed according
to Definition 11 where Y = /0. Addition of χ is GR-sceptical-IN-relevant for φ w.r.t. I iff
there is some I ′ ∈ F(I) such that φ is GR-sceptical-IN, having χ in its certain arguments
iff the SAT instance is True. NP-completeness follows from Proposition 8 and the fact
that the corresponding JUSTIFICATION problems are in P.

5. Related work

The computational complexity of various problems defined on argumentation frame-
works is well-studied; see [15] for an overview. Most studies only identify IN arguments
and do not distinguish other justification statuses; notable exceptions are [16] and [17],
but neither of these works give complexity results for separate statuses, as we do.

Complexity studies on problems defined on IAFs emerged more recently. For exam-
ple, variants of the verification problem on IAFs are studied in [4]. The problems of sta-
bility and relevance differ from the verification problem as they are defined on arguments
rather than sets of arguments. More related is [5]: the authors study potential and neces-
sary credulous and sceptical acceptance in IAFs, where necessary sceptical acceptance
of a given argument A, for example, means that in each specification’s certain projection,
each extension (under a given semantics) contains A. The notions of necessary credulous
and sceptical acceptance are very similar to specific stability problems: in fact, we used
results regarding their complexity for proving the complexity of stable-IN statuses. Fi-
nally, the notion of stability, which was originally defined on structured argumentation
frameworks in [7], is transposed to the context of IAFs in [6] and preliminary complexity
results for stability under four semantics are provided. In our work, we define a more
fine-grained notion of stability and provide more precise complexity characterisations.

Our notion of relevance has not been introduced or studied before. It is related to
the notion of influenced sets in e.g. [18], which intuitively are sets of arguments whose
justification status may change after an update. This notion is however less strict than
relevance: there are situations in which some argument A would be in the influenced set
of adding an uncertain attack (B,C), while addition of (B,C) is not relevant for A.

6. Conclusion

We studied the complexity of detecting stability and relevance in incomplete argumen-
tation frameworks. First, we redefined stability [7,8,6] on IAFs. Our definition is a more
fine-grained notion than the existing definition on IAFs [6], since it distinguishes between
IN, OUT and UNDEC justification statuses. This distinction is appropriate in for example
applications in inquiry [7,8], where a dialogue discussing a given argument should be
terminated if more information cannot change the argument’s (exact) justification status.

As second main contribution of this paper, we introduced the notion of relevance,
which has not been studied before in the context of stability, and analysed its complexity.
Returning to the application in inquiry, the identification of relevant elements can be used
to select the next question, reaching a stable situation in an efficient way.

It is however unlikely that the stability and relevance problem itself can be solved
efficiently for all inputs: our complexity analysis revealed that the nontrivial variants



of the relevance and stability problems have a complexity ranging from the first to the
third level of the polynomial hierarchy; see Table 1 for an overview. Interestingly, even
within the same semantics, there are differences in the complexity of UNDEC-STABILITY
problems and the corresponding IN-STABILITY problems – we consider this to be an
additional reason to study a fine-grained notion of stability and relevance.

In future work we will complete Table 1, by studying the computational complex-
ity of relevance for the other semantics and UNDEC status. In addition, to apply these
theoretical concepts in practice, we plan to develop algorithms for evaluating or estimat-
ing stability and relevance. Finally, we will study stability and relevance in structured
argumentation frameworks, such as a dynamic version of ASPIC+, for various semantics.
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