
Generalising argument dialogue with the
Dialogue Game Execution Platform

Floris BEX a, John LAWRENCE b, Chris REED b

a Information and Computing Sciences, Utrecht University, The Netherlands
b School of Computing, University of Dundee, UK

Abstract. In this paper, we present the Dialogue Game Execution Platform
(DGEP), which is able to process and execute any dialogue game specified in a
general description language and build arguments and dialogue histories in the lan-
guage of the AIF ontology. Thus, DGEP allows us to generalise techniques for gen-
eration and investigation of dialogues and, through a set of web services, connect a
wide variety of multi-agent systems and human-computer interfaces for dialogue.

Keywords. dialogue specification, dialogue execution, argument web services

1. Introduction

Dialogue games are attracting increasing attention both for their formal properties and
connections to proof theoretic procedures [10], as well as for their ability to support,
structure and evaluate dialogical processes [17]. Though there are a number of dialogue
games for argumentation in the literature [8], and a number of general frameworks for
representing games [5, 16], there are no general purpose mechanisms for handling high-
level executable definitions of arbitrary games including all the usual features of realistic
argument dialogue games, including commitment handling, turn-taking rules, attacks on
dialogue participants or the dialogical construction of underlying argument structures.
In order to fill this gap, we have developed a general framework for describing and ex-
ecuting dialogue games, with a further aim of providing its functionality as a robust,
implemented platform accessible through a straightforward set of web services.

One of the difficulties of the research on argument dialogue systems is that it is frag-
mented: each dialogue system has its own definitions and is embedded in its own context,
so it is difficult to specify, analyse and empirically compare the existing protocols. Work
that does take a more generic [10] or comparative [9] approach does not concern itself
with aspects of implementation and execution, and existing implementations [15, 17]
build the protocol rules into the program itself, which means that the program will only
ever be able to execute a single predetermined protocol.

A solution to the above-mentioned lack of flexibility is to design a language for spec-
ifying different protocols in a machine-readable way, so that the protocol specifications
can be expressed separately from the program that executes them. Such specification
languages have been designed for generic multi-agent dialogue protocols (e.g. LCC [12]

and the FIPA ACL1). Extensions have been proposed for dealing with argumentation [8],
and recently two languages aimed specifically at argumentation dialogues have been de-
veloped [16, 5]. However, what is still missing is a flexible execution platform, that is not
only able to execute these dialogue protocol specifications, but also handles connections
to software agents, argument structures, large knowledge bases and human-computer in-
terfaces. Hence, argument dialogue systems have largely stayed within the confines of
the academic lab, in contrast to more static applications for opinion and argumentation,
which have seen relatively wide uptake for educational and commercial purposes2.

In order to advance the theoretical study as well as the practical applicability of dia-
logue games, we propose a generic and flexible approach which is able to capture and ex-
ecute not only protocols from computational argumentation (e.g. [10, 9]), but also proto-
cols from philosophy and communication theory (e.g. [14]). At the heart of this approach
sits the Dialogue Game Execution Platform (DGEP). DGEP is able to interpret dialogue
game specifications expressed in an amended version of the Dialogue Game Description
Language (DGDL) [16]. Based on a protocol specification, DGEP produces dialogue
templates [3], schematic representations of a single move in a dialogue, its reply and
the connections to the underlying argument structure in terms of the AIF ontology [7].
Dialogue histories with an explicit reply structure can be formed by combining multiple
templates and thus existing argument structures in the Argument Web [1], which also
adhere to the AIF ontology, can be navigated and updated using dialogues.

In section 5, we explain how DGEP executes a machine readable specification of a
dialogue protocol (as defined in section 3), thus building formal dialogue histories and
their underlying argument structures in the language of the AIF (section 4)

2. Dialogue games for argumentation

We start with a simple example to illustrate some of the concepts of dialogical argumen-
tation that will be used throughout the paper. Dialogues consist of a series of locutions
(utterances) made by the participants. As a simple example of a dialogue, take the follow-
ing exchange between Bob and Alice on the UK’s Trident nuclear missile programme:

1. Bob: Britain should stop the Trident Programme!
2. Alice: Why?
3. Bob: It is expensive!

In this dialogue, multiple participants make claims and pose questions. There is co-
herence to the way the participants react to one another, and the connections between
locutions represent functional transition relations rather than, for example, temporal re-
lations. That is, there is an (implicit) reply structure in the dialogue that contains the
functional connections between the locutions in a dialogue. These connections can be
informally interpreted as a ‘responds to’ relation between two locutions. The relationship
between Alice asking ‘Why [should Britain stop Trident]’ (2) and Bob’s response ‘It is
expensive’ (3) is an example of such a functional relationship.

1www.fipa.org/repository/aclspecs.html
2As evidenced by the large number of users of visualisation software like Araucaria (araucaria.

computing.dundee.ac.uk) and Rationale (www.rationaleonline.com).

During dialogue, participants (implicitly) construct and navigate an underlying ar-
gument structure [16][23] of claims and reasons. For example, in the above dialogue the
argument ‘[Trident] is expensive therefore Britain should stop Trident’ is made. Thus,
we distinguish between arguments as a static structure of premises that are reasons for
or against conclusions (as in, ‘he prepared an argument’) and arguments as debates or
dialogues (as in, ‘they had an argument’).

Dialogue and arguments are connected via the illocutionary force relations of the
speech acts in the dialogue. A speech act can be analysed as a locution (the actual ut-
terance, e.g. ‘Why?’), but also as an illocutionary act which consists of the illocutionary
force (the intention of uttering a locution: one may say p with an intention of asserting
p, asking p, challenging p, promising p and so on) and the propositional content, the
proposition(s) the act refers to. In our example, speech acts (1) and (2) have the same
propositional content – ‘Britain should stop Trident’ – but differing illocutionary force
– asserting and challenging, respectively. Furthermore, relations between propositions in
argument structures can also be generated by, or anchored in, transitions between one
locution and the next in a dialogue [11]. Take, for example, Alice’s question (connected
to its propositional content) and Bob’s assertion (also connected to its propositional con-
tent). When imagined in isolation, even as occurring in different dialogues then, ceteris
paribus, there would be no link between ‘Trident is expensive’ and ‘Britain should stop
Trident’. It is only in virtue of the fact that Bob’s assertion of Trident’s high cost is re-
sponding to Alice’s challenge of ‘Britain should stop Trident’ that there is an inferen-
tial link here. Hence, the relationship between (2) and (3), which captures the notion
of responding, has as its illocutionary force ‘arguing’ and as its content the inferential
relationship from ‘Trident is expensive’ to ‘Britain should stop Trident’.

3. The Dialogue Game Description Language

The domain specific language DGDL (Dialogue Game Description Language) was pre-
sented in [16] and, after having been extended, refined and simplified, is now being re-
leased as DGDL+3. We will not discuss the entire specification but rather an example
of a dialogue protocol expressed in DGDL+ (Specification 1). This example presents a
slightly simplified version of Walton’s CB game [14].

Lines 1-6 define general characteristics of the game. A player can make a single
move per turn, there is a strict progression of alternating moves and the maximum num-
ber of turns is defined by the user (line 2). There are always 2 players, identified as
black and white (line 3). These players can play the role of a speaker, a listener or
(ultimately) a winner during the dialogue (line 4). Each player has a commitment store
(CS, lines 5, 6) which is visible to all.

Protocol rules that are not tied to a specific move in the dialogue, such as rules for
initiation, termination and winning, are defined using rules, which check the game
state at set stages in the dialogue – at the start of the dialogue (initial), after every
turn (turnwise) or after every move (movewise). The interaction elements of
a specification define the types of speech acts that can be performed in the dialogue.
Both rules and interactions contain at least one element that states the effects

3The complete DGDL+ specification and protocols are available at www.arg.dundee.ac.uk/dgdl

Specification 1 The simplified CB protocol [14] expressed in DGDL+
1 CB{
2 {turns, magnitude:single, ordering:strict, max:$UserDefined$} ;
3 {players, min:2, max:2}; {player, id:black}; {player, id:white};
4 {roles, speaker, listener, Winner} ;
5 {store, id:CS, owner:black, structure:set, visibility:public} ;
6 {store, id:CS, owner:white, structure:set, visibility:public} ;
7
8 {transforce, {<challenge, {p}>}, {<statement, {q}>}, arguing,
9 {<q, p>, Inference} }

10
11 {rule, StartingRule, scope:initial,
12 {assign(black, speaker) &
13 move(add, next, statement, {p},
14 {inspect(in,{p},CS,black,initial}})}};
15
16 {rule, SpeakerWins, scope:turnwise,
17 {if {foreach {p, {CS,speaker,initial},
18 extCondition(Conseq{p, CS, listener, current})}}
19 then {status(terminate,CB) & assign(speaker, winner)}}} ;
20
21 {rule, ListenerWins, scope:turnwise,
22 {if {foreach {p, {CS,listener,initial},
23 extCondition(Conseq{p, CS, speaker, current})}}
24 then {status(terminate,CB) & assign(speaker, listener)}}} ;
25
26 {interaction, statement, asserting, {p}, "State",
27 {store(add, {p}, CS, speaker) &
28 move(add, next, statement, {q}) &
29 move(add, next, challenge, {p}, inspect(!in,p,CS,listener)) &
30 foreach{q, {CS,listener}, move(add, next, Withdraw, {q},
31 extCondition(NotConseq{q, CS, listener})}}};
32
33 {interaction, challenge, challenging, {p}, "Why?",
34 {move(add, next, statement, {q}, extCondition(Conseq,{{q},{p}})&
35 move(add, next, Withdraw, {p}}}};
36
37 {interaction, withdraw, withdrawing, {p}, "No commitment",
38 {store(remove, {p}, CS, speaker) &
39 move(add, next, statement, {q}) &
40 foreach{q, {CS,listener}, move(add, next, Withdraw, {q},
41 extCondition(NotConseq{q, CS, listener})}}};
42 }

of applying the rule or interaction uttered, and zero or more requirements, which
capture the conditions for the effects to be applicable.

The effects of a rule or an interaction can be of several types. Common ones
are store operations (store), which define manipulations on the contents of commit-
ments stores, role updates (assign) to indicate changes of roles and status updates,
which indicate changes in global dialogue status (status). The most important type
of effect is indicated by the move predicate, which adds moves to a set of legal moves
for one or more of the players. These moves then become either mandatory at the next
turn (challenges must be met immediately, for example), or possible at some point in the
future (a claim can be questioned at some point, for example).

The predefined requirements can be used to, for example, the presence or absence of
elements within a commitment store (inspect) or whether the current (or some other)

player is in a particular role. In addition to these standard requirements, there exist an
essentially limitless number of properties of the dialogue or the underlying argument
structure that can be checked or calculated. For example, many games (including CB)
include a limit on the number of turns in a dialogue. Requirements can also be based on
comparisons – for example, that the number of moves of one party is more than that of
another party. And they need not be numerically based – there may be constraints based
on string manipulations (that a textual contribution is fixed at a number of characters,
say), or logical properties (e.g., that an utterance should be outside the deductive closure
of what has already been said) or argument properties (e.g. that an utterance must address
an argument which is undefeated under grounded semantics), and so on. Clearly DGDL+
cannot anticipate all the possible requirements of a dialogue that may be pertinent, lest it
turn into a general purpose programming language. DGDL+ therefore provides a small
number of requirements that commonly appear in the literature as inbuilt predicates (i.e.
commitment store check, role check), and a general purpose predicate extCondition
is provided with which arbitrary functions not defined in the protocol specification can be
indicated. Note that the requirements in an interaction are not the requirements
for moving that interaction. Rather, the requirements tell us which conditions need to be
satisfied for another interaction to be added to the legal moves set.

In the CB specification, StartingRule (lines 11-14) is the initial rule: black
is assigned as the first speaker and that just one move is possible, namely statement.
Note the extra requirement is enclosed at the end of the move(add,...) structure:
black can only state something that is in his initial commitment set. Further note that
it is not indicated for which player the move is added to the set of legal moves: the strict
turn order combined with the fact that moves that are added are always mandatory in the
next turn means that this is clear from the specification.

SpeakerWins (lines 16-19), resp. ListenerWins (lines 21-24) check every
turn whether all the elements that were in the speaker’s (listener’s) initial commitment
set follow from the listener’s (speaker’s) current commitment set; if this is the case, the
speaker (listener) wins and the dialogue terminates. Notice how DGDL refers to some
the external condition Conseq. Clearly, specifying how to compute whether some p is
a (logical) consequence of some q lies outside of the scope of DGDL, so this is referred
to an outside function.

Like all elements of DGDL+, interactions have a standard form. The second
element of an interaction indicates the name of the interaction (statement), the
third element indicates its illocutionary force (asserting), the fourth element indi-
cates the content of the speech act (a proposition p) and the fifth element is gloss, giving
an informal indication of the utterance (‘State’). The rest of the interaction contains
the rules for what should be done after a player uses the interaction in the dialogue.

When a player makes a statement p, (lines 26-31) p is added to the commitment
store of both the speaker, and the listener (i.e. the next player to move) can perform one
of three moves: they can make a new statement q, they can challenge p as long as p
is not in their commitment set, or they can withdraw some q from their commitment
store (as long as q does not follow from their commitment store).

A challenge p move (lines 33-35) forces the next player to either withdraw
p or provide a reason q for p, that is, state some q of which p is a consequence. A
withdraw p move (lines 37-41) deletes p from the speaker’s commitment set and can

be followed by a (possibly unrelated) statement or withdraw move from the next
player.

The only part left to explain of the example protocol is the idea of transitional illocu-
tionary force, or transforce. This element of a specification defines what the illocu-
tionary force and content of a reply of one interaction to another interaction
in a dialogue is. In the example protocol (lines 8,9), replying to a challenge p
with a statement q has the illocutionary force of arguing and as its content an
Inference from q to p.

4. AIF graphs

The Argument Interchange Format (AIF) [7] is an abstract core ontology that encapsu-
lates the common subject matter of the various (logical, linguistic, graphical) approaches
to argumentation. AIF acts as an interlingua between different theoretical and practical
approaches to argumentation which allows, for example, arguments constructed in visu-
alization packages such as Araucaria to be evaluated using the various argumentation the-
oretic semantics that are available [2]. The AIF also serves an important practical purpose
as the underlying language of the Argument Web [1], a linked data Semantic Web struc-
ture containing more than 15,000 claims and 1500 arguments with different (inferential,
conflict, illocutionary) relations between them. This Argument Web is implemented in
a number of machine readable formats (DOT, RDF/XML, SQL, Prolog) and can be in-
teracted with in a number of different ways; existing and bespoke tools are available for
text annotation, visualisation, search, evaluation, social media and dialogue4.

Whereas DGDL+ makes it possible to express protocol rules for dialogue games, we
also need to be able to express structures of actual argument and dialogue. More specifi-
cally, we need a representation of a dialogue history or trace. The AIF’s graph-theoretic
basis allows dialogue histories and their underlying arguments to be represented as AIF
argument graphs. The ontology places a distinction between information, the proposi-
tions and sentences, and schemes, general patterns of reasoning. Accordingly, there are
two basic types of nodes: I-nodes, to represent information, and S-nodes, to denote appli-
cations of schemes, the relations between the information nodes. Rule application nodes
(RA-nodes) denote applications of an inference rule and conflict application nodes (CA-
nodes) denote specific conflicts. In Figure 1, which shows the history of our example di-
alogue and the corresponding argument structure as an AIF graph, there are two standard
I-nodes, I1 and I2, and one RA-node representing that I2 is inferred from I2.

The original AIF specification [7] has been expanded to capture dialogue [11, 3]. Lo-
cutions are represented by L-nodes, which are a special type of I-node, and these L-nodes
are connected by transition application nodes (TA-nodes), which represent the functional
connections between locutions. Note that, where RA-nodes represent applications of in-
ference rules or schemes, TA-nodes are also based on general transition schemes. For
example, replying to a ‘Why p’ challenge by giving a reason for p is a typical pattern
one expects to encounter in an argumentative dialogue and can hence be captured by a
scheme. Figure 1 shows the history the dialogue: L1 – TA1 – L2 – TA2 – L3. Note that
while this example is a simple chain, dialogues that allow for backtracking (i.e., replying
to another locution than the last) will lead to more tree-shaped reply structures.

4argumentinterchange.org/library

L1: Bob says ‘We should
get rid of Trident’

L2: Ann says
‘Why?’

L3: Bob says ‘Because
it’s expensive!’

TA1 TA1

I1: Britain should
get rid of Trident

I2: Trident is
expensive

YA1: asserting YA4: assertingYA2: challenging YA3: arguing

RA

Figure 1. A dialogue (top) and argument (bottom) as an AIF graph, connected by illocutionary force

The last type of relation that needs to be discussed is the illocutionary relation be-
tween L-nodes and I-nodes. This relation can be of a number of types, depending on the
type of illocutionary force, and thus capture a specific type of linguistic relation. As a
result, we refer to these rules as illocutionary schemes or Y schemes, and specific ap-
plications of these schemes are represented by YA-nodes. In the dialogue (figure 1), the
asserting and challenging relations between the L- and I-nodes are shown. Notice also
the response of L3 to L2, captured by TA2, which has an illocutionary force of arguing
and as its content the inference rule application captured by the RA-node.

It is usual for the dialogue history to change only monotonically as a dialogue pro-
ceeds (that is, once something has been said it cannot be unsaid), and AIF graphs are
therefore monotonic (i.e., dialogical updates will not remove material from the graph).
However, in addition to dialogue history we also need a representation of the (shared)
information stores of the participants, such as commitments or knowledge bases. In rep-
resentation of these stores, monotonicity is less common: we would not wish to prohibit
retraction or withdrawal. So the specific information stores as defined in the DGDL+
specification of a dialogue cannot be directly captured in the AIF graph and need to be
defined separately in DGEP (see section 5).

5. Dialogue Game Execution Platform

The Dialogue Game Execution Platform, DGEP, aims to execute games specified in
DGDL+ (section 3), thus building AIF graphs (section 4) and expanding the Argument
Web. Figure 2 shows the interactions between DGEP, its users and its support services.

agents human users

updatesused by

used by

External
services (e.g.

theorem
provers)

Dialogue Game
Execution Platform

used by
Dialogic Support Tools
(Arvina, Argublogging)

connects to

Dialogue Specifications

(DGDL+)
Argument Web

(AIF)

interact with
connect toprocessed by

Figure 2. The Dialogue Game Execution Engine and its associated systems and users

5.1. DGEP execution cycle

DGEP processes a DGDL+ specification rather as if it were a compiler5. DGEP then
starts an execution with a set of participants and a given starting claim. The participants
may be human or software, and DGEP makes no distinction (that is, it implements the
ideal of mixed initiative argumentation). Many games also require initial specification
and initialisation of various parameters (e.g., the number of turns permitted) and informa-
tion states (e.g., the players’ starting commitment stores or knowledge bases), so DGEP
also processes these in the initial phase. The connection between agents and the Argu-
ment Web means that agents can optionally use (a part of) the Argument Web as their
knowledge base.

From the initial turn onwards, DGEP develops the legal move list for each par-
ticipant. It does this by firing rules and interactions: a rule fires according
to its scope, and an interaction when it is moved by a player during the game.
When a rule or an interaction fires, DGEP first checks whether the possible
requirements are true. Most of the standard requirements (e.g. involving commit-
ment stores, number of turns, player roles) can be checked against the parameters and
stores initialised in DGEP. For external conditions (extCondition) a general purpose
interface is provided by which arbitrary functions, provided as web services which return
Booleans, can be called by DGEP. For example, in a run of the CB game, an external
theorem prover can be called to find out whether some p is a consequence of some q.

Once all requirements of a rule can be confirmed, DGEP instantiates the
effects, possibly binding variables with, for example, matches from the store. As
mentioned in section 3, the effects may be store operations, role and status updates
and, perhaps most importantly, move availability. A given set of effects may give
rise to many possible updates to the list of legal moves available for a given participant,
indicating moves that become either mandatory or possible at some point in the future.

For all the legal moves at a given turn, there may be many instantiations (depending
on, for example, the commitments and knowledge base of the participants). DGEP gen-
erates all of these moves and delivers them to participants (that is to say, to autonomous
agents and to graphical interfaces used by humans) as a 4-tuple consisting of a moveID,
opener (an informal indication of the utterance), reply (the formal structure of the
move) and aif (a fragment of AIF that corresponds to the move). The fragment of AIF
informs the agent as to the structure of his move in terms of the AIF, and thus gives an
agent the correct structure for, for example, easily creating queries on AIF (recall that
software agents use the Argument Web as a knowledge base from which they can extract
arguments that constitute appropriate instantiations of the required move). However, the
agent may very well choose to disregard this AIF and call on another knowledge base.

Finally, a participant selects an appropriate move from its legal move list and exe-
cutes it by passing the move identifier back to DGEP. Artificial agents need to do some
sort of processing to select between alternative legal moves – dialogues strategies have
not yet been implemented so currently this selection is random. Note participants’ replies
are handled asynchronously both because of increased robustness and because some di-

5Specifically, an ANTLR (http://www.antlr.org) generated parser is used to convert DGDL+ to an
Abstract Syntax Tree (AST). The AST produced is then converted to a Python data structure representing the
hierarchy of elements within the DGDL+ specification.

alogue games do not impose rigid turn taking rules (those in which interruptions are
permitted, and those, such as auctions, where many agents take on identical roles).

In addition to updating the legal move list for participants, the execution of a move
also updates AIF structures. A theoretical account of how move executions update AIF
structures was first discussed in [3], where we introduced the idea of a dialogue game
specification expressed as dialogue templates. Dialogue templates are chunks of unin-
stantiated AIF representing a single transition relation (reply) in a dialogue, including
the start (replied to) and end (replying) locutions of the transition, the type of illocution-
ary force of both locutions (and possibly of the transition) and the argument structure
that the locutions refer to. Templates can be instantiated to form transitions (i.e. a step
in a dialogue), and these transitions can then be chained to form a dialogue history, an
AIF graph. As an example of dialogue templates, consider figure 3, which shows two
templates based on the CB specification. The elements inside the dotted box have to be
present in the Argument Web for the template to be applied; the elements outside the
dotted line will be added to the Argument Web after the application of the template. Tem-
plate A represents replying to an asserting move with a challenge, and template B shows
how one can reply to a challenging move by asserting something, and how this reply is
an instance of arguing. Note how instantiating these two templates with the appropriate
information and chaining them together gives us the example from 1.

InferenceI1 I2

T

I1

A BL1L2L1 L2

Challenging Arguing AssertingAsserting Challenging

T

Figure 3. Dialogue templates for capturing updates to the Argument Web

Dialogue templates show how a dialogue game specification can be represented as
a series of explicit reply structures (cf. [10, 9]). DGEP implements the idea of dialogue
templates in its own way. The start locutions of a template (i.e., the elements inside the
dotted box in figure 3) are in the Argument Web. The end locutions of the template, those
that will be added on execution of the move, are captured by the respective DGDL+
interaction, which defines the illocutionary force and content. The (possible) illo-
cutionary force of a transition is expressed by the transforce structure in the speci-
fication. Whenever a move is executed in reply to another move, DGEP first checks the
Argument Web for the presence of the start locutions (with their associated illocutionary
force and content). It then applies the dialogue templates, adding the end locution, the
illocutionary force and propositional content (as defined by the interaction the AIF
structure.

5.2. DGEP API

DGEP provides a simple set of interfaces allowing clients for both autonomous agents
and human interfaces to connect and play instances of dialogue games. In order to pro-
vide an open platform, and to be consistent with other AIF and linked data, Semantic
Web components which can be pipelined [1], these interfaces are offered as web services.
DGEP offers a number of web service interactions:

• /available returns a list of protocols corresponding to the DGDL+ files that are
available within the system. For example, this service currently returns a list of
nine games: {"dgdl": ["RPD", "CB", "mm", "IMPACT", "TDG", "DC",

"Prakken", "PPD", "Lorenzen"]}

• /dialogue/new/<PROTOCOL> is used to initiate a dialogue according to a given
protocol. When this occurs, DGEP communicates with the Argument Web to cre-
ate a new NodeSet, which will later be used to store the nodes created in the course
of this particular dialogue. DGEP also makes an entry in its own internal database
at this stage, recording the protocol being used, the AIFdb NodeSetID and a dia-
logueID, that will be used for all future interactions in this dialogue.

• /dialogue/<DIALOGUEID>/roles returns a list of the roles available in the
dialogue. In this case DGEP’s internal database is also consulted to determine any
roles which may already have been filled.

• /dialogue/<DIALOGUEID>/join/<ROLE> allows for a new user joining a di-
alogue. The client application specifies the dialogueID for the dialogue that they
are joining, and the role which they wish to have within the dialogue. DGEP again
stores this information in its local database and generates a participantID that can
then be used to retrieve the user’s available move list as well as to make a move.

• /dialogue/<DIALOGUEID>/moves and
/dialogue/<DIALOGUEID>/moves/<PARTICIPANTID> return available legal
moves globally or for a specific participant.

• /dialogue/<DIALOGUEID>/interaction/MOVEID allows a participant to
make a specifically identified legal move.

• /dialogue/<DIALOGUEID>/transcript and /dialogue/<DIALOGUEID>/status

can be used by an application to get a list of moves carried out so far and the
current status of the dialogue (w.r.t. participant roles, termination and so on).

These web service interactions allow a variety of interfaces to be connected to the
execution engine. For example, Arvina6 [1] allows users to play dialogue games against
agents and each other in an instant-messaging environment. Another interaction style has
recently been proposed in [4], where users can respond to online texts according to the
chosen dialogue protocol, directly posting these responses on their blog.

6. Conclusions

In this paper, we have discussed the Dialogue Game Execution Platform (DGEP), a gen-
eral approach to specifying, implementing and executing argumentative dialogue games.
We have extended the specification language DGDL [16] into DGDL+. In addition to
adding the necessary elements for illocutionary relations, the major change is that DGDL
simpliciter defines pre- and postconditions for each interaction. This means that
whenever a game is executed, at each new turn the execution engine will have to check
all interactions in order to construct the legal moves list. DGDL+ checks require-
ments for the next possible move directly after the current move is played, which makes
for a much more efficient execution process.

6arg.dundee.ac.uk/arvina

A wide variety of dialogue games can be specified in DGDL+; specifications exist
for CB [14], [10]’s persuasion game, [9]’s games for inquiry, persuasion and information
seeking, [15]’s game for value-based reasoning and a bespoke persuasion game devel-
oped for testing the Arvina interface. Further converting the multitude of dialogue games
specified in DGDL [16] to the updated DGDL+ language is a straightforward task.

In addition to DGDL+, there are a number of other dialogue specification languages
which are aimed at implementation. [8] present a simple extension for argumentation
to the FIPA Agent Coordination Language, and [12] discusses the Lightweight Coordi-
nation Calculus, a high-level language for expressing coordination protocols in general.
Though the general-purpose nature of FIPA ACL and LCC is a strength from a theoreti-
cal perspective, it forces one to build from scratch all the machinery used by the protocol,
such as commitment stores and argument structures. As a result, though FIPA ACL and
LCC provide an interesting overarching framework they are too lightweight for practical
specification of dialogue games that use argumentation.

DGEP uses AIF, the language of the Argument Web, to express the dialogue histories
generated by the execution of dialogue games. These dialogue histories capture not just
the locutions that have been uttered, but also the underlying argument structures and the
way in which they were updated by the locutions in the dialogue. This allows for a more
fine-grained analysis of dialogical phenomena such as the way in which inference can be
anchored in dialogue [11] and the ways in which the (credibility) of the participants of a
dialogue can be attacked [6]. These dialogue histories can also serve as a denotational se-
mantics for the DGDL+ language [8, 13]. Furthermore, by explicitly interpreting DGEP
dialogue updates as applications of generic dialogue templates specified in AIF, we can
define how these dialogue templates serve as the operational semantics for the language
DGDL+ [13]. Thus, we have made a first step towards a theory that allows us to consider
the properties of dialogue games not just on a formal case-by-case approach but rather
in the empirical class-of-systems approach that is popular in verification research.

A recent dialogue execution framework similar to DGEP is [5]’s Framework for
Dialogical Argumentation (FDA). In FDA each protocol is specified as a number of
action rules, similar to DGDL+’s rules and interactions, where an action rule
has an antecedent that refers to the current state of the dialogue and a head that specifies
the possible actions that can be undertaken on the next state of the dialogue. Whilst FDA
allows for the definition of various protocol-specific predicates, certain other dialogue
mechanics (such as private and public states and turn taking functions) are ‘hard-coded’
into the framework, which makes FDA somewhat less flexible.

FDA mainly focuses on the automatic generation of execution traces for the inves-
tigation of theoretical properties of simple protocols and leaves elements like dialogue
participants, argument structures and human-agent dialogues untouched. DGEP, with its
accessible web services and connection to the Argument Web, aims to get argumenta-
tive dialogue out of the lab and into practical use. Software agents can use the 1500+
arguments for playing dialogue games that in turn further update the Argument Web. In
this way, the Argument Web provides a large knowledge base for realistic multi-agent
dialogues, a knowledge base that is continually updated by exactly the mixed-initiative
dialogue it supports. Second, the compatibility between DGEP and AIF means that any
user interface or agent that uses the DGEP API is directly compatible with the wider
Semantic Web, of which the Argument Web is also a part.

References

[1] F. Bex, J. Lawrence, M. Snaith, and C. Reed. Implementing the argument web.
Communications of the ACM, 56(10):66–73, 2013.

[2] F. Bex, S. Modgil, H. Prakken, and C. Reed. On logical reifications of the argument
interchange format. Journal of Logic and Computation, 23(5), 2013.

[3] F. Bex and C. Reed. Dialogue templates for automatic argument processing. In
Proceedings of COMMA 2012, pages 266–377, 2012.

[4] F. Bex, M. Snaith, J. Lawrence, and C. Reed. Argublogging: An application for the
argument web. Web Semantics: Science, Services and Agents on the World Wide
Web, 2014. to appear.

[5] E. Black and A. Hunter. Executable logic for dialogical argumentation. In Proceed-
ings of ECAI, pages 15–20, 2012.

[6] K. Budzynska and C. Reed. The structure of ad hominem dialogues. In Proceedings
of COMMA 2012, pages 410–421, 2012.

[7] C. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,
G. Vreeswijk, and S. Willmott. Towards an argument interchange format. The
Knowledge Engineering Review, 21(4):293–316, 2006.

[8] P. Mcburney and S. Parsons. Dialogue Games for Agent Argumentation. In I. Rah-
wan and G. Simari, editors, Argumentation in Artificial Intelligence, chapter 22,
pages 261–280. Springer, 2009.

[9] S. Parsons, P. McBurney, and M. Wooldridge. The mechanics of some formal inter-
agent dialogues. In Advances in Agent Communication, pages 329–348. 2004.

[10] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal
of logic and computation, 15(6):1009–1040, 2005.

[11] C. Reed, S. Wells, K. Budzynska, and J. Devereux. Building arguments with argu-
mentation : the role of illocutionary force in computational models of argument. In
Proceedings of COMMA 2010, 2010.

[12] D. Robertson. A lightweight coordination calculus for agent systems. In Declara-
tive agent languages and technologies II, pages 183–197. Springer, 2005.

[13] R. M. Van Eijk, F. S. De Boer, W. Van Der Hoek, and J.-J. C. Meyer. A verifi-
cation framework for agent communication. Autonomous Agents and Multi-Agent
Systems, 6(2):185–219, 2003.

[14] D. Walton. Logical dialogue-games and fallacies. University Press of America,
Inc., Lanham, MD., 1984.

[15] M. Wardeh, A. Wyner, K. Atkinson, and T. J. M. Bench-Capon. Argumentation
based tools for policy-making. In Proceedings of ICAIL 2013, pages 249–250,
2013.

[16] S. Wells and C. Reed. A domain specific language for describing diverse systems
of dialogue. Journal of Applied Logic, 10(4):309–329, 2012.

[17] T. Yuan, D. Moore, C. Reed, A. Ravenscroft, and N. Maudet. Informal logic
dialogue games in human-computer dialogue. Knowledge Engineering Review,
26(2):159–174, 2011.

