
Dialogue Templates for Automatic

Argument Processing

Floris BEX and Chris REED

Argumentation Research Group, School of Computing, University of Dundee

Abstract Dialogue systems attempt to capture structured communication with the

aim of understanding, improving, and automatically recreating such
communication. This paper discusses dialogue templates: blueprints that can be

instantiated and combined to form argumentative dialogues. These templates

provide a generic way of representing individual dialogue systems and allow us to
generalise techniques for investigation, generation and recognition of dialogues.

1. Introduction

Much of real-world argument proceeds through discussion and the dialectical process

of argument and counterargument by its very nature assumes a dialogical context.

Dialogue systems attempt to capture aspects of structured communication with the aim

of understanding, improving, and automatically recreating such communication.

Originating in philosophy [6][10][27] and linguistics [24], dialogue systems consider

utterances as moves in a game, the rules of which are set out in a dialogue protocol.

The protocol regulates, among other things, turn taking and ensures that each move is

relevant, thus allowing players to argue, inform, investigate and negotiate in a regulated

way. Thus, implementations of dialogue systems can be used to support, for example,

complex decision-making processes [29] and interaction with large datasets [22].

There is much work that explores specific dialogue protocols and their

implementations in computational argumentation and multi-agent systems (see [13] for

an overview). In many cases these explorations and implementations are from the point

of view of a single protocol. Work on combinations of dialogue protocols (e.g.

[11][12][21]) typically operates at a high level of abstraction, that is, it provides the

formal scaffolding for joining arbitrary protocols but does not tell us exactly how

specific types of dialogue locutions influence each other. Furthermore, in much of the

work on computational argumentation (e.g. [15][16]) the main theoretical focus is on

how protocols and the dialogues that instantiate them influence the acceptability of

claims or arguments (in the sense of [4]); what this work fails to show is how logical

structures (viz., relations between propositions such as inferences and conflicts) can be

constructed and navigated by those specific dialogues in the style of [23].

What is needed is a generic framework for expressing dialogues, protocols and the

ways in which fragments of those dialogues navigate and update reasoning structures.

This framework should move away from a case-by-case approach and aim to reconcile

insights from computational argumentation with those from philosophy, linguistics and

informal argumentation theory. It should provide a means of expressing the syntax of

arbitrary dialogues in terms of reply structures as well as define update semantics for

dialogues that determine, for example, what it means for a question to be replied to

with an agreement. The framework must be specific enough to facilitate software

implementation of dialogue games and study of the theoretical properties of games, but

at the same time it should allow for the analysis and modelling of real debate.

In order to capture all the above requirements, we propose dialogue templates,

schemas that encode the generic structure of utterances and replies in dialogue. Similar

to conversation policies in multi-agent communications [5], these templates can be

mixed and matched to form different types of protocols. Dialogues with an explicit

reply structure can then be formed by instantiating and combining multiple templates.

Thus the syntax and semantics of arbitrary dialogues can be represented in a common

format. As a case in point, we present [27]’s CB game as a set of dialogue templates.

Furthermore, dialogue templates allow (with additional future software) the execution

of arbitrary protocols, which allows arguments to be constructed and navigated, and

properties of protocols to be investigated and compared.

 The rest of this paper is structured as follows. In section 2 we briefly introduce

dialogue games, discuss the common features of dialogue protocols and give a simple

example of a protocol. Section 3 specifies the infrastructure of an automatic dialogue

game execution platform, and section 4 discusses the framework for expressing

dialogue and protocol. Section 5 discusses related research and concludes the paper.

2. Dialogue Games for Argumentation

Argumentative dialogues consist of a series of locutions (utterances) made by the

participants. As a simple example of a dialogue, take the following exchange between

Bob and Alice on the UK’s Trident nuclear missile programme:

(1) Alice: Should Britain stop the Trident Programme?

(2) Bob: Yes, it should.

(3) Alice: Why?

(4) Bob: It is expensive!

(5) Bob: And also, Britain needs to set an example for other countries to follow.

In this example dialogue, multiple participants make claims and pose questions, and

there is an amount of coherence to the way the participants react to one another. That is,

there is an (implicit) reply structure in the dialogue [16] that contains the connections

between the locutions in a dialogue, the ‘glue’ [1] that keeps the locutions together and

makes a dialogue coherent. This is analogous to non-dialogical argument, where logical

(inference) connections form the glue between the individual propositions.

 The connections between locutions represent functional transition relations rather

than, for example, temporal sequence. Our example demonstrates that despite being

consecutive, there is little connection between (4) and (5). Equally, the relationships

between Bob agreeing that ‘Britain should stop Trident’ (2) and then giving a reason

(i.e. ‘It is expensive’, 4) is very much the sort of relationship we want to capture, even

though the distance between them could be arbitrarily great.

During dialogue, the participants (implicitly) construct and navigate an underlying

argument structure [16][23], a static rendition of the claims, proposals or arguments

made. For example, in the above dialogue one of the arguments made is ‘[Trident] is

expensive therefore Britain should stop Trident’. Here, we distinguish between

argument1 and argument2 [13]. Argument1 (below referred to simply as ‘argument’)

refers to an argument as a static structure of premises that are reasons for or against

conclusions (as in, ‘he prepared an argument’). On the other hand, argument2 (further

referred to as ‘dialogue’) refers to a debate or discussion (as in, ‘they had an argument’).

In order to understand the link between dialogue and argument, we need to

consider the idea of a speech act [25]. A speech act can be analysed as a locution (the

actual utterance, e.g. ‘Yes, it should’), but also as an illocutionary act which consists of

the illocutionary force (the intention of uttering a locution: one may say p with an

intention of asserting p, asking p, challenging p, promising p and so on) and the

propositional content, the proposition(s) the act refers to. In our example, speech acts

(1), (2) and (3) have the same propositional content – ‘Britain should stop Trident’ –

but differing illocutionary force – questioning, asserting and challenging, respectively.

2.1. Dialogue protocols

Some of the principles that make a dialogue coherent have been formulated and studied

in the literature on formal dialogue systems. At the heart of these systems are the

dialogue protocols that describe a dialogue game’s permitted locutions, how and when

the dialogue starts and ends, how locutions commit the players to certain claims and,

perhaps most importantly, how locutions may be combined into exchanges.

As an example of a simple dialogue system, consider Walton’s CB game for two

player persuasion, which has four different types of locutions. Statements ‘State S’,

which can be used to assert claims; Withdrawals ‘No commitment S’, which allow

players to withdraw their commitment to a statement; Questions ‘S?’, which ask

whether the other player thinks S is true or not; and Challenges ‘Why S?’, which

request a reason for S. These locutions are fairly standard in protocols for persuasion

dialogues; [17] further lists a ‘concede S’ locution that can be used to admit to some

statement S, and an ‘argue S so T’ locution that is used to provide an argument.

The dialogue rules of CB determine that certain moves can only be followed by

other moves, thus enforcing a logical reply structure. These rules are: players take turns

and advance one locution at a time, with the exception of the combination ‘No

commitment S, Why S?’, which may be uttered by a player in one turn; a question ‘S?’

must be followed by either ‘State S’, ‘State Not-S’, or ‘No Commitment S’; and ‘Why

S?’ must be followed by either ‘No commitment S’ or ‘State T’, with S a consequence

of T. Contrary to some other dialogue systems (e.g. [16]), CB does not have a full,

explicit reply structure; apart from the above exceptions there are no rules that govern,

for example, which locution must be used to reply to a statement or a withdrawal. This

makes CB flexible at the cost of coherence: in theory, both players could alternate

making seemingly unconnected statements until the dialogue terminates.

In a dialogue, commitments can be used to, for example, ensure a player does not

contradict himself (dialogical consistency) or ensure that a player is prepared to defend

his claims (dialectical obligations). CB lists five commitment rules: a ‘State S’ adds S

to the speakers commitment store; ‘No commitment S’ deletes S from the speaker’s

commitment store; ‘Why S?’ places S in the hearer’s commitment store; a statement

that is shown by the speaker to be an immediate consequence of statements that are

commitments of the hearer is automatically added to the hearer’s commitment store;

and a commitment that is shown by the speaker to be an immediate consequence of the

hearer’s current commitments may not be withdrawn by the hearer.

CB has only one termination rule: the players agree in advance that the game will

terminate after a set number of moves. Examples of other termination rules are when

both players agree to end the dialogue, when a player accepts the other player’s main

claim [17] or when a player runs out of possible moves to make [16] (note that the

latter is only possible in games with an explicit reply structure) .

An important issue with dialogue protocols is the way in which they handle the

connection to the underlying argument structure of a dialogue. Many dialogue

protocols explicitly refer to argument structures or to the logical rules and mechanisms

that pertain specifically to these structures. CB, for example, refers to a notion of

consequence, which depends on the notion of inference in non-dialogical argument: T

is a consequence of S if T can be inferred from S. Other examples are [16], where the

moving of counterarguments is allowed and the notion of counterargument is defined

in some underlying argumentation system (e.g. [18]), and [15] who define the outcome

of a dialogue in terms of a structure of arguments and counterarguments.

3. Automatically Processing Dialogues and Protocols

A large set of dialogue protocols is available from the literature and some work has

explored how commonalities across that set might yield representational and

computational benefits [11][12][21]. Given this work, it is natural to consider building

generalisations not just in theory but also in practice. That is to say, with a variety of

protocols with common and distinguishing features, it should be possible first, to

represent their features in a common, executable language, and then second, to

construct a general execution environment which can support the creation of instances

of dialogues according to their governing protocols.

If these dialogue rules can be expressed in a generalised language, it should be

possible for a general purpose execution engine to, for example, respond to a request to

determine what legal moves are available next given a game protocol and a description

of the last move. For example, in CB the challenge move (3) in our example dialogue

(section 2) must be followed by a statement or withdrawal move; whereas in DC [10],

the same move can also be followed by a demand for resolution. If the game is

Markovian, the request to determine the next legal move can be stateless [21], and can

sit behind a RESTful web service of the sort that has proven so useful in constructing

modular online systems. It could thence form a part of agent communication processing

in a multi-agent system, or control logic for dialogic support tools such as Magtalo [22]

or Arvina [8]. The Dialogue Game Execution Platform (DGEP, Figure 1) offers a

means for any implementation which requires dialogue execution to make use of any

available protocol. Note furthermore that if we want to execute arbitrary protocols we

will inevitably need some toolkit for rapidly constructing them.

Arvina is a dialogical support system that allows for the structured execution of a

reasoning process by implementing dialogue protocols and then allowing users to play

the dialogue game against virtual agents and against each other in an instant-messaging

environment. Arvina is currently limited to a single protocol and directly interfaces

with the Argument Web [20], an argumentation corpus that at time of writing contains

a growing set of around 2,000 non-dialogical and dialogical arguments built using a

variety of argument visualisation and construction tools [9]. Ultimately, the aim is to

have DGEP as an intermediary between Arvina (and other dialogical tools) and the

Argument Web, so that this large corpus can be extended, navigated and used in a

regulated way by executing any of the available protocols.

Dialogue
Templates

Dialogue
Protocols

Dialogue Game
Construction

Toolkit

Argument
Web

Argument Support
Tools (e.g. Araucaria)

Dialogue Game
Execution Platform

used
by

used
by

produces

transformed
into

supports
construction

of

Dialogic Support Tools
(e.g. Magtalo, Arvina)

visualised by

produce

has
interface

Figure 1: Specification for the automatic processing of dialogues

 The question then turns to exactly how such protocols should be represented for

DGEP. The remainder of this paper shows how the right level of abstraction in

representing the necessary information can be captured using dialogue templates,

schematic representations of a single move and its reply, the illocutionary force of both

moves and the underlying argument structure. Note that dialogue templates may

(perhaps) not provide the right level of abstraction in presenting these rules in human-

readable form. We can use a loose analogy here with a high level programming

language like Java. The right level of abstraction for human software engineers is the

Java language itself. The right level of abstraction for execution is bytecode – which

demands a bytecode interpreter, the JVM. Similarly, the dialogue game construction

toolkit may offers a high level expression language whilst the templates that are a result

of those high level specifications can be executed directly by the DGEP.

Finally, with a language for representing dialogue protocols, plus a language for

representing specific executions (i.e. specific dialogues), it becomes possible to explore

two new classes of question: first, does a specific extant dialogue conform to a specific

protocol; and secondly, what is the set of protocols to which a given extant dialogue (or,

conceivably, a set of dialogues) conform?

4. A generic framework for representing argument and dialogue

If dialogue and argument structures are to be used by software platforms like DGEP,

they should be expressed in a language that is sufficiently precise and formally

grounded. However, the framework should also be natural enough to facilitate large-

scale analyses of dialogue. It is for these reasons that we render dialogue and argument

structures as graphs in the language of the Argument Interchange Format (AIF)

[19][23]. In these graphs, the individual elements of arguments and dialogue are

represented as a set of linked data, typed nodes containing images, text, formulas and

so on, which facilitates analysis of real-world argument and dialogue. The language of

the AIF is also compatible with the state-of-the-art computational frameworks for

structured argument construction and evaluation [2]. Furthermore, the language is

expressive and precise enough to capture the main components of argumentation

(inference, conflict, preference) and dialogue (locution, transition, illocutionary force).

More importantly, it explicitly captures the links between dialogue and argumentation

which are needed to have DGEP and the tools that depend on DGEP interface with the

Argument Web, which depends on the non-dialogical part of the AIF [19].

4.1. Transitions in dialogue

Complex inference structures in non-dialogical argument are often explicitly rendered

in an inference graph, in which proposition-nodes are linked with inference and conflict

relations. The reply structure of dialogues can be explicitly represented in the same way,

with locution-nodes being linked by transitional reply relations (Figure 2). In this figure,

locutions (boxes) are related to each other via transitional relations (circles) denoting

transitions from one locution to the next. Locutions have two attributes: speaker, the

person who uttered the locution, and time, the time at which the locution was uttered

(which is left implicit in Figure 2).

Alice:
Should Britain
stop Trident?

Bob:
Yes it

should.

Alice:
Why?

Bob:
It is

expensive!
T1 T2 T3

Bob:
Britain should

set an example!
T4

Figure 2: An example of locutions and transitions in argumentative dialogue

4.2. Illocutionary force in dialogue

With dialogue represented as dialogue-graphs, and argument as inference-graphs, it is

convenient to render the connection between the two also as relations in a graph. Figure

3 characterises the connections between the dialogue from Figure 2 and the underlying

argument structure according to the illocutionary force of the locutions.

Alice:
Should Britain
stop Trident?

Bob:
Yes it

should.

Alice:
Why?

Bob:
It is

expensive!

Britain should
stop Trident.

Trident is
expensive.

T1

Inference

T2 T3

Dialogue

Argument

Illocutionary

Force
Questioning Asserting Challenging Supporting Asserting

Figure 3: Illocutionary force as the link between dialogue and argument

Note that the argument in Figure 3 follows the same graphing conventions as the

dialogue graph. Propositions are diagrammed as boxes (locutions are also propositions)

and relations (transitional, inferential, illocutionary) are diagrammed as ellipses.

The first three locutions Question, Assert and Challenge whether Britain should

stop Trident, and Bob’s last move asserts that Trident is expensive. The illocutionary

relation of ‘supporting’ between T3 and the Inference in the argument is more complex.

Alice’s question (connected to its propositional content) and Bob’s assertion (also

connected to its propositional content) can be imagined in isolation, even as occurring

in different dialogues. And if they were then, ceteris paribus, there would be no link

between ‘Trident is expensive’ and ‘Britain should stop Trident’. It is only in virtue of

the fact that Bob’s assertion of Trident’s high cost is responding to Alice’s challenge of

‘Britain should stop Trident’ that there is an inferential link here [23]. Hence, the link

between the transitional relationship that captures the notion of responding (T3) and the

inferential relationship can thus be characterised as the illocutionary force of an

implicit speech act ‘support’ or ‘argue’. Recall that some dialogue systems (e.g. [16])

contain explicit speech acts for posing an argument ‘Trident is expensive so Britain

should stop Trident’. Such a locution could have an illocutionary link to both ‘Trident

is expensive’ (asserting) and the inference (supporting).

4.3. Calculated properties

Given a graph like the one in Figure 3 there are many properties of the argument and

the dialogue that can be calculated: the number of premises that support a conclusion;

the number of locutions performed at a specific time; whether or not one set of nodes

successfully defeat some other set of nodes according to a definition of acceptability;

whether or not one set of nodes is a consequence of another set according to a logical

interpretation; and so on. These properties are calculated using processes (counting,

searching, comparing) that in formal systems would typically be defined at the meta-

level, and thus they are dependent on the exact formal system they invoke. Furthermore,

the properties are often non-monotonic, whereas the argument graphs used here must

be monotonic in that any dialogical update is guaranteed not to remove material from

the graph. Consequently, these calculation processes cannot and should not be captured

in the graphs.

The calculated properties themselves, however, can be represented in the graphs of

the object language: they are just propositions and they may be used in argument and

dialogue explicitly. So, for example, one may encounter a node in a graph that says that

‘Britain should stop Trident is a consequence of Trident is expensive’, or a node that

says that ‘Bob is committed to Britain should stop Trident’ and so on.

4.4. Dialogue Templates

Dialogue templates are schematic representations of a single transition in a dialogue,

including the ‘start’ and ’end’ locutions of the transition, the illocutionary force of both

locutions and the argument structure that the locutions refer to. In other words,

templates are transition schemes which can be instantiated to form transitions (i.e. a

step in a dialogue), and these transitions can then be chained to form a dialogue. Note

that the ontological machinery at work here is (intentionally) very similar to that of

argumentation schemes, schematic representations of inference that can be instantiated

to form inferences, which can be chained to form arguments.

Dialogue templates can be used to represent dialogue protocols. Templates provide

an explicit reply structure for a dialogue, that is, given the protocol they define for each

type of locution the possible replies (transitions to other locutions). For protocols like

CB, where there are few restrictions on the exact reply structure, there will a relatively

high number of dialogue templates, as every possible transition needs to be covered. In

contrast, dialogues with an explicit reply structure like [16] or dialogues with a few

locutions can be represented by a considerably smaller number of templates.

If we look at Figure 3, we can see that a single move in a dialogue consists of a

locution (Alice: Should Britain stop Trident?), propositional content (Britain should

stop Trident) and a relation of illocutionary force connecting the two (Questioning).

Thus, our framework is the only model that explicitly distinguishes between these

elements that come directly from speech act theory [25].

Definition 1 [Move in dialogue] A move in a dialogue consists of a locution L and a

set of pairs (IF, ), where IF is an illocutionary force indicator and  is the

propositional content. The locution L has an associated player pi and time ti.

In our rendering of dialogues, the actual locution is not directly important – all we need

to know is that there is a locution uttered by a player at some time. Hence, we will

informally represent a move as, for example, pi asserting  (at ti), rendering only the

player, time, illocutionary force and propositional content. The moves in CB (see

section 2.1) are pi asserting  (‘State S’), pi withdrawing  (‘No commitment ’), pi

questioning  (‘?’) and pi challenging  (‘Why ’).

Definition 2 [Dialogue Template] A dialogue template (Start, End, Pres, IF, )

consists of one or more start moves Start, an end move End, a set of presumptions Pres

and (optionally) the illocutionary force IF of the transition and the target of this

illocutionary force .

Table 1 shows the dialogue templates for CB. Templates 8 – 14 are explicitly

mentioned in the rules of CB. Templates 1 – 7 and 15, however, require explanation.

Templates 1 – 3 start with an empty move  and 15 ends with , an artificial

placeholder to signify the start and end of the dialogue, rather like the reserved states S

and F often used to signify the start and end state in finite state machines. Withdrawing

moves can only be played if the speaker is committed to the proposition he withdraws,

and in order to be committed to a proposition a player must have either asserted it

(templates 4,5,7) or the other player must have challenged him on it (template 12,14).

An exception is the move ‘No commitment ’ in reply to a ‘?’ question (this should

probably not be interpreted as a strict withdrawal but rather as a way of saying that one

has no opinion on ). In CB, a player can always challenge, but it also makes sense to

allow challenges to reply to an assertion of the other party (template 6,7). Finally, note

that ‘pi withdrawing  and pi challenging ’ is considered to be one compound move.

In addition to Start and End moves, dialogue templates also have presumptions,

conditions which have to be met before the template can be applied. In the case of CB,

for example, a player can only withdraw a commitment if he has not previously done

so, if it is his turn and if the dialogue has not yet terminated. Notice that these

presumptions all concern calculated properties (e.g. counting the number of turns). In

dialogue templates, calculated properties are implemented as presumptions on a

transition (rather than as, for example, preconditions for the performance of a move).

This insight is derived from the analogy between transition schemes (dialogue

templates) and argumentation schemes (argument templates), the latter of which have

implicit premises (defined by the critical questions) which are included in the scheme

but not by default in the argument that instantiates the scheme; it is only when they are

challenged or questioned that they become an explicit part of the argument. The same

thing happens for the calculated properties that are used in protocol definitions. If the

fact that ‘it is pj’s turn’ is not disputed (by the original participants in the dialogue or by

any subsequent analyst or contributor) then it remains an implicit part of the dialogue

template and never becomes an explicit part of the dialogue graph. In this way, a

mechanism is provided for representing calculated properties when necessary without

cluttering analyses with large numbers of implicit premises.

Table 1: Dialogue Templates for CB

ID Start End Pres IF

1  pi asserting  1,2

2  pi questioning  1,2

3  pi challenging  1,2

4 pi asserting  pi withdrawing  1,2,3,4

5 pi asserting 

pi withdrawing  and

pi challenging 

1,2,3,4

6 pi asserting  pj challenging 

7 pi asserting ;

pj asserting 

pj withdrawing  and

pj challenging 

1,2,3,4

8 pi questioning  pj asserting  1,2

9 pi questioning  pj asserting  1,2 Contradicting  with 

10 pi questioning  pj withdrawing  1,2,3,4

11 pi challenging  pj asserting  1,2,5 Supporting  with 

12 pi challenging  pj withdrawing  1,2,3,4

13 pi withdrawing  and

pi challenging 

pj asserting  1,2,5 Supporting  with 

14 pi withdrawing  and

pi challenging 

pj withdrawing  1,2,3,4

15 any move  6

Here, pi ≠ pj and  ≠ . The presumptions are: (1) it is pj’s turn; (2) the maximum number of

turns has not been reached; (3) pi has not previously withdrawn ; (4) pj is not committed to ,

where  is an immediate consequence of ; (5)  is a consequence of ; and (6) the maximum

number of turns has been reached.

Consider the example in Figure 3. First template 2 is applied: ‘Alice questioning

Britain should stop Trident’ is the End move. Now there are three templates that can be

applied, namely 8 – 10. Figure 4B shows template 8 as a graph, which expresses the

idea of dialogue templates as building blocks for dialogue graphs more clearly. The

elements inside the dotted lines have to be present in the Argument Web for the

template to be applied; the elements outside the dotted line will be added to the

Argument Web after the application of the template. Notice how the schematic graph of

template 8 provides a template for the T1 relation in Figure 3. Next, Alice challenges

Bob’s assertion (template 6), and Bob replies to Alice’s challenge and by providing a

reason for his earlier assertion (template 11, Figure 4A). Finally, template 15 will be

applied to terminate the dialogue.

Inference

L2

player pj

T11
L1

player pi

I1 I2

Presumptions
1, 2, 5

T8
L1

player pi

L2

player pj

I1

Presumptions
1, 2

Challenging Supporting Asserting AssertingQuestioning

A B

Figure 4: Dialogue Templates based on CB.

Many of the templates in Table 1 can be re-used in the modelling of other dialogue

protocols. Templates 4, 6, 11 and 12 for example, are mentioned by [17] as being

standard in most dialogue games for persuasion. For example, pi asserting  represents

CB’s Statement (‘State ’) but also [16]’s claim locution. What makes these templates

specific to CB are the presumptions, which refer explicitly to the way in which CB

handles, for example, commitment and the underlying argument structure.

4.5. Calculating presumptions

Whilst calculated properties can be represented as presumptions, it is crucial that in a

generalised execution language the processes involved in calculating these properties

are not explicitly represented. Dialogue templates are intended to encode the explicit

reply structure enforced by a protocol and not arbitrarily complex an arbitrarily specific

calculation processes. However, for current purposes it is interesting to discuss briefly

the various types of presumptions and the processes that can possibly compute them.

In the case of dialogue protocols, any type of rule may involve calculated

properties. Some commitment rules, for example, can be represented explicitly as a

transition. For example, in dialogues without withdrawal, ‘p is committed to ’ can be

represented by having an assert move (which commits the player) as a Start move of

the relevant template. In dialogues with withdrawal, however, presumptions are needed

(cf. template 4,5,7 in Table 1). So, as can be expected, whether or not something is a

calculated property does not depend on the type of protocol rule, but rather on whether

the rule involved some kind of calculation process. .

Important types of properties that need to be calculated are (i) properties that refer

to the non-existence of a node or relation in the graph (presumption 3: there is no move

pi withdrawing ); (ii) properties that refer to temporal sequence (presumption 1: the

temporally previous move was uttered by the other player); (iii) properties that involve

counting elements of the graph (presumption 2: the number of moves does not exceed

the maximum turns); (iv) properties that refer to concepts which are not part of the

graph (presumption 5:  can be inferred via a finite number of inference rules). The

calculation of such properties cannot be represented in a graph.

If, however, we want the Dialogue Game Execution Platform (section 3) to be able

to correctly execute dialogue protocols, it needs to be able to determine whether the

presumptions hold before it applies a dialogue template. In order to do this, the DGEP

must call on implementations of the various calculation processes. Some of these

calculation processes can be integrated into the DGEP (e.g. in the case of calculating

temporal sequences). Other processes, however, are more suited to external

programmes. Whether  is a consequence of , for example, can be determined by any

appropriate theorem prover. Using such external programmes affords an interesting

measure of generality for the DGEP. For example, we can execute CB with as its

underlying logic a propositional logic, or an argument-based logic such as ASPIC+ [2].

5. Discussion and conclusions

In this paper, we have proposed a way of representing dialogue protocols in the form of

dialogue templates. By defining these templates and the generic dialogue language, we

can represent the syntax and update semantics of any arbitrary dialogue game we care

to define in a common language. This allows us to move away from the case-by-case

approach common in the literature on computational argumentation and move towards

a class-of-systems approach. A similar pattern has emerged in verification research

where the focus of study is squarely now upon developing tools and techniques that

will work for large classes of programmes, rather than exploring particular phenomena

of specific programming constructs [7].

Dialogue templates allow for the automatic execution of dialogue protocols and

they can hence be used, for example, to model agents that help navigate complex

argument structures or to construct all dialogues based on a set of protocol rules. When

paired with a simple dialogue game construction toolkit, the templates thus allow us to

incrementally construct dialogues that conform to a great variety of protocols, compare

these dialogues and thus investigate the properties of the protocols. An advantage of

the current approach’s reliance on AIF is that we can use the Argument Web, which

contains a large amount of non-dialogical argument data that can act as the basis for

these automatically constructed dialogues.

Work that has studied classes of dialogue protocols is [15], which defines atomic

protocols, fragments from which a dialogue can be created (e.g. challenge x – assert y

– accept x). The authors discuss how these atomic protocols can be combined and what

some of the formal properties are of the resulting dialogue protocols. Other work that

has discussed generic dialogue protocols in a principled way is by Prakken [16][17],

who defines an explicit reply structure for persuasion dialogue and discusses the

connection to an underlying (non-dialogical) argument framework is also discussed.

The framework of dialogue graphs and templates proposed in the current paper is

explicitly inspired by this previous work. Dialogue templates are very similar to atomic

protocols, and in future research we intend to show that the results from [15] also apply

to the appropriate dialogue templates. Furthermore, Prakken’s ways of determining

whether the player of a move is winning are also applicable to dialogue graphs. Thus,

[15][16] have the same relation to dialogue graphs as ASPIC+ [18] has to non-

dialogical argument graphs [2]: graphs can be used to express argument and dialogue

and the frameworks of [18] and [16] can be used to determine the acceptability of these

dialogues and arguments under some argumentation-theoretic semantics.

The current work expands on [15] [16] in various ways. In addition to the basic

templates, ways of calculating presumptions (specifically presumptions concerning

commitment) are being developed for the DGEP. This focus on implementation in the

DGEP also means a connection to the wider Argument Web; thus we aim to increase

the relevance and applicability of the formal and theoretical results achieved in [15][16].

Furthermore, the current objective is not just to define and discuss a fixed set of atomic

protocols, but rather to explore how existing protocols can be compiled into individual

templates and what this compilation means for the properties of the resultant dialogues.

Our approach to argumentation, in which the focus is on the correct representation

and conceptualisation of argumentative information, allows us to integrate

computational argumentation with ideas from linguistic and philosophical approaches

to argumentation [2][23][26]. As an example of an advantage this connection brings,

consider the relevance of reasons. In [16], there is no illocutionary force of transitions,

which means that a Why ? – State  reply will not yield an inference; this inference

( since ) has to be explicitly uttered. However, locutions of the form  since  are

quite rare in natural argumentation: the rarity of this form has led to a specific name for

the enthymematic Why-Because structure, Modus Brevis [3]. By explicitly building on

the linguistic approach of [25] our framework is suitable for capturing such natural

forms of argumentation.

References

[1] N. Asher and A. Lascarides. Logics of Conversation, Cambridge University Press, 2005.

[2] F.J. Bex, S. Modgil, H.Prakken and C.Reed. On Logical Reifications of the Argument Interchange
Format. Journal of Logic and Computation, to appear (2012).

[3] R. Cohen. Analyzing the Structure of Argumentative Discourse. Computational Linguistics 13:1 (1987)

11-24.

[4] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n–person games. Artificial Intelligence (1995) 77:2, 321 – 357.

[5] M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In F. Dignum and M.
Greaves (eds), Issues in Agent Communication, LNAI 1916, 118–131. Springer, 2000.

[6] C. Hamblin. ‘Mathematical models of dialogue’. Theoria 37 (1971), 130–155.

[7] R. Jhala and R. Majumdar. Software model checking, ACM Computing Surveys 41:4 4 (2009).
[8] J. Lawrence, F. Bex and C. Reed. Dialogues on the Argument Web: Mixed Initiative Argumentation

with Arvina. Computational Models of Argument: Proceedings of COMMA 2012, to appear.

[9] J. Lawrence, F. Bex, M. Snaith and C. Reed. AIFdb: Infrastructure for the Argument Web.
Computational Models of Argument: Proceedings of COMMA 2012, to appear.

[10] J.D. Mackenzie. Question begging in non-cumulative systems, Journal of Philosophical Logic 8 (1979)

117–133.
[11] N. Maudet and F. Evrard. A generic framework for dialogue game implementation. Proceedings of the

2nd Workshop on Formal Semantics and Pragmatics of Dialogue (1998), 185—198.

[12] P. Mcburney and S. Parsons. Games that agents play: A formal framework for dialogues between
autonomous agents. Journal of Logic, Language and Information, 11:3 (2002), 315-334.

[13] P. McBurney and S. Parsons. Dialogue games for agent argumentation. In I. Rahwan and G. Simari

(eds.): Argumentation in Artificial Intelligence. Springer, Berlin (2009), 261-280.
[14] D. O’Keefe. Two concepts of argument. Journal of the American Forensic Association, 13 (1977) 121–

128.

[15] S. Parsons, P. McBurney and M. Wooldridge Some preliminary steps towards a meta-theory for formal
inter-agent dialogues. 1st International Workshop on Argumentation in Multi-Agent Systems (ArgMAS

2004), AAMAS 2004, New York, NY, USA.

[16] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and
Computation 15 (2005), 1009-1040.

[17] H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review, 21:2 (2006)

163–188.
[18] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and

Computation, 1:93–124, 2010.

[19] I. Rahwan and C. Reed. The Argument Interchange Format. In G. Simari & I. Rahwan (Eds.),
Argumentation in Artificial Intelligence, Springer (2009), 383-402.

[20] I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web. Artificial
Intelligence , 171:897–921, 2007.

[21] C. Reed. Representing dialogic argumentation. Knowledge-Based Systems, 19:1 (2006), 22-31.

[22] C. Reed and S. Wells, Using Dialogical Argument as an Interface to Complex Debates, in IEEE
Intelligent Systems Journal, Special Issue on Argumentation Technology (2007).

[23] C. Reed, S. Wells, K. Budzynska and J. Devereux. Building arguments with argumentation: the role of

illocutionary force in computational models of argument. Computational Models of Argument:
Proceedings of COMMA 2010, IOS Press, Amsterdam (2010), 415 – 426.

[24] F.H. van Eemeren and R. Grootendorst. Speech acts in argumentative discussions: A theoretical model

for the analysis of discussions directed towards solving conflicts of opinion. Foris, 1984.
[25] J.R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, 1969.

[26] J. Visser, F. Bex, C. Reed, and B. Garssen. Correspondence between the pragma dialectical discussion

model and the argument interchange format. Studies in Logic, Grammar and Rhetoric, 36, 2011.
[27] D.N. Walton. Logical Dialogue Games and Fallacies. University Press of America, 1984.

[28] M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

[29] T. Yuan, D. Moore, C. Reed, A. Ravenscroft, and N. Maudet. Informal Logic Dialogue Games in
Human-Computer Dialogue, Knowledge Engineering Review (2011) 26(3).

