

Software Architecture Design Reasoning: A Card Game
to Help Novice Designers

Courtney Schriek1, Jan Martijn van der Werf1, Antony Tang2, and Floris Bex1

1 Utrecht University, Utrecht, The Netherlands
C.J.Schriek@students.uu.nl
J.M.E.M.vanderWerf@uu.nl

F.J.Bex@uu.nl
2 Swinburne University of Technology, Melbourne, Australia

atang@swin.edu.au

Abstract. Software design is a complicated process, and novice designers have
seldom been taught how to reason with a design. They use a naturalistic approach
to work their way through software design. In order to impart the use of design
techniques, a card game was developed to help design reasoning. This game was
tested on groups of students and resulted in noticeable differences between the
control and test groups. Those who used the cards produced better design argu-
ments: the groups with the card game on average perform 75% more reasoning
than the control groups. The results show that the design strategy used by the
groups is a clear indicator for how many and what kind of design problems are
designed, while the cards influence how the designers solve these problems.

Keywords: design reasoning, reflective thinking, software design

1 Introduction

Software architecture design is a complicated process, mostly revolving around
problem-solving activities. Within software development many things have to be taken
into consideration, not least being the requirements, but also what available technolo-
gies there are, the needs of stakeholders, and those of the developers and future re-
design teams. This is known as a ‘wicked’ problem, meaning that problem and solution
are intertwined so that understanding the problem depends on how the designer wants
to solve it. Such problems are inherently ill-defined and have no standard solution [1].

As a result it is the design decisions made at this stage that have the greatest influence
on the eventual product. But people do not always use logical thinking, instead making
decisions based on instinct, what is known as naturalistic decision making [2]. This can
cause flawed reasoning, especially when the problem is complex and/or new, combined
with the designer’s lack of expertise.

In order to resolve these problems, designers need to move from naturalistic decision
making to logical reasoning decision making, especially when designers are not expe-
rienced with either the problem domain or the solution domain.

There has been some software design reasoning research, but there is almost no sim-
ple and comprehensive method that can be used in practice. In this paper, we propose
a card game for this purpose. The card game combines techniques in a simple form,
and is developed to help novice designers to consider certain reasoning steps during
design. This card game has been tested in an experiment involving students of a Soft-
ware Architecture course. The aim of the experiment is to assess any obvious differ-
ences among control and test groups, and to establish if the card game had a positive
influence on the logical reasoning process using qualitative analysis.

The card game is based on the reasoning techniques described in Tang and Lago[3].
The main reasoning techniques are the identification of assumptions, risks and con-
straints. The students also need to carry out trade-offs and articulate the contexts, prob-
lems, and solutions. Novice designers can forget that they need to reason about certain
things. Razavian et al. [4] proposed to use a reflection system to remind designers. In
their experiment, reflective thinking was applied using reasoning techniques to trigger
student designers to use logical reasoning. In our experiment, cards were used to remind
novice designers to use reasoning techniques. The choice for cards instead of a software
tool was made because many software tools, such as those used for Design Rationale,
have been developed but are not prevalently used in the design world. The most com-
mon reason for this is that the adoption and use of these systems take too much time
and are too costly to be effectively used [5]. The cost-effectiveness of such a system is
in fact the most important characteristic for consideration by software companies [6].
Cards do not cost much to produce or to use, and depending on the rules do not need
extensive time to learn. Cards are also not unfamiliar in software design, as several card
games, such as IDEO method cards are used for stimulating creativity [7], Smart Deci-
sions card, used for learning about architecture design [8], and planning poker, used
during release planning to estimate the time needed to implement a requirement [9],
already exist and designers are familiar with their uses. The card came additionally
includes several reflection periods during the experiment to encourage participants to
explicitly reason with the design.

We compare novice designers equipped with reasoning techniques to the control
groups using natural design thinking. The results show that the test groups came up
with many more design ideas than the control group.

In the following sections more background information on design reasoning are
given, together with reasoning techniques which stimulate logical reasoning (Sec. 2).
Next, we introduce the student experiment, how it has been performed, and how vali-
dation of the results has been reached (Sec. 3). After this the results of the experiment
will be explained, ending with an analysis of the results and further discussion on how
the card game can be used for further experiments (Sec. 4). Threats to validity are dis-
cussed in Sec. 5. Section 6 concludes the paper.

2 Design Reasoning

Design reasoning depends on logical and rational thinking to support arguments and
come to a decision. In a previous research, it has been found that many designers do
not reason systematically and satisfice results easily [10]. Designers often use a natu-
ralistic process when making decisions where experience and intuition play a much
larger role [11]. As such, people need to be triggered to consider their decisions in a
more rational manner. This can be done by using reasoning techniques. Previous re-
search has shown that supporting designers with reasoning analysis techniques can pos-
itively influence design reasoning [4, 12, 13].

There are other issues with design thinking, which can be categorized as; cognitive
bias, illogical reasoning, and low quality premises.

Cognitive bias occurs when judgments are distorted because the probability of some-
thing occurring is not inferred correctly or there is an intuitive bias. This can be seen
with representativeness bias and availability bias, where the probability of an event is
mistaken because it either looks more typical, or representative, or because it is more
easily envisioned. An example is anchoring, where software designers choose solutions
for a design problem based on familiarity, even when it is ill-suited to solve the problem
[14, 15].

Illogical reasoning is when the design reasoning process is not used and problems
occur with identifying the relevant requirements. The basis premises and arguments
being used in the design discussion are not based on facts.

Low quality premises for design argumentation can be caused by missing assump-
tions, constraints or context. Premises of poor quality can be caused by either an inac-
curate personal belief or the premise being incomplete or missing. Much of reasoning
depends on the quality of the premises themselves, if these are not explicitly stated or
questioned, software designers are more likely to make incorrect decisions [15, 16].

The basis of how such reasoning problems can develop lies in the difference between
the two design thinking approaches: the naturalistic decision making, and the rational
decision making. This is sometimes referred to as a dual thinking system: System 1 is
fast and intuitive with unconscious processes, i.e., naturalistic decision making. System
2 is slow and deliberate with controlled processes, i.e., rational decision making [17].

People naturally defer to System 1 thinking, and so in the case of software design
designers need to be triggered to use System 2 thinking for decision making. This is
done by invoking reflective thinking or prompting, which in the simplest sense is think-
ing about what you are doing, meaning that the person consciously evaluates their ideas
and decisions [18].

2.1 Design Reasoning Techniques

In order to trigger logical reasoning several design reasoning techniques can be im-
plemented during design, such as risk analysis [20], trade-offs [21], assumption analy-
sis [22], and problem structuring [23]. These reasoning techniques support logical rea-
soning by means of analysis of various aspects of design decisions. These techniques

are well known. However, to combine these techniques in a simple form to teach and
remind students to consider certain reasoning steps during design is new.

The reasoning techniques chosen for this experiment are not exhaustive and are in-
stead a selection of common techniques already used in software architecture: problem
structuring, option generation, constraint analysis, risk analysis, trade-off analysis and
assumption analysis.

Problem structuring is the process of constructing the problem space by decompos-
ing the design into smaller problems. These then lead to reasoning about requirements
and the unknown aspects of the design [24]. This reasoning technique focuses on iden-
tifying design problems and how these can be resolved when the situation is one the
designer is unfamiliar with. It is used to identify the problem space and the key issues
in design by asking questions related to the problem, such as what are the key issues.
Its aim is to prevent the designer from overlooking key issues because of unfamiliarity
with the problem. The more time spend on problem structuring the more rational an
approach the designer uses.

Solution Option generation is a technique specifically directed at the problem of
anchoring by designers, in which the first solution which comes to mind is implemented
without considering other options. With option analysis the designer looks at each de-
cision point at what options are available to solve a design problem.

Constraint analysis looks at the constraints exerted by the requirements, context and
earlier design decisions and how they impact the design. These constraints are often
tacit and should be explicitly expressed in order to take them into account. Trade-offs
can come from conflicting constraints.

Risk analysis is a technique to identify any risks or unknowns which might adversely
affect the design. Risks can come from the designer not being aware if the design would
satisfy the requirements, in which case the design needs to be detailed in order to un-
derstand these risks and mitigate them. Or the design might not be implementable be-
cause designers are unaware of the business domain, technology being used and the
skill set of the team. These risks should be explicated and estimated.

Trade-off analysis is a technique to help assess and make compromises when re-
quirements or design issues conflict. It can be used for prioritization of problems and
to weigh the pros and cons of a design which can be applied to all key decisions in a
design [3].

Assumption analysis is a technique used to question the validity and accuracy of the
premise of an argument or the requirements. It focusses mainly on finding hidden as-
sumptions. It is a general technique which can be used in combination with the other
reasoning techniques [15].

We propose a simple method that combines the main design reasoning techniques,
and use a card game to prompt novice designers. In our research, we test the effective-
ness of this technique.

3 Student Experiment

The theory studied in this paper is that applying reasoning techniques, through the
use of a card game, has a positive influence on design reasoning with software design-
ers. This theory is tested using an experiment focusing on inexperienced designers or
novices. This experiment involved test and control groups carrying out a design. The
results of the two groups are compared to one another. We use simple descriptive sta-
tistics and qualitative analysis to analyse the results.

The subjects for the experiment are 12 teams of Master students from the University
of Utrecht, following a Software Architecture course. These were split into 6 control
teams and 6 test teams, with most having three designers working together, two teams
with two designers, and one team with four designers. Based on an earlier assessment,
the teams were ranked, from which they were randomly selected for the test or control
groups to ensure an equal amount of skill.

3.1 Experiment Design and Pilot Testing

Before the student experiment, a pilot study was run to test the card game and refine
it by finding any major flaws or misunderstandings. The pilot study was performed by
two Master students whom had already completed the course. The results of the pilot
resulted in several important changes being made to the card game. Firstly, the cards
were simplified and reduced to 7 cards, to simplify card play as the initial number of
cards made it difficult to choose from them. The final card game is show in Fig. 1. The
pilot showed that card play tapered off towards the end of the design session. To enforce
card play, three reflective periods were added evenly spread throughout the session
when cards have to be played. Lastly, the card rules were simplified to remove re-
strictions on fluid discussion.

The assignment used in the experiment is the same as used in the Irvine experiment
performed at the University of California [25]. This assignment is well known in the
field of design reasoning, as participants to the workshop analysed the transcripts made
and submitted papers on the subject [26]. The assignment is to design a traffic simula-
tor. Designers are provided with a problem description, requirements, and a description
of the desired outcomes. The design session takes two hours. The assignment was
slightly adjusted to include several viewpoints as end products in order to conform to
the course material [21]. The sessions were recorded with audio only and transcribed
by two researchers.

Trade‐offRiskAssumptionConstraint

C A R T

Problem SolutionContext

Fig. 1. - Final Cards

The card game is constructed based on an earlier experiment [4] which incorporated
the reasoning techniques as reflective questions by an external observer who served as
a reflection advocate to ask reflective questions. The card game replaces these questions
with cards. Four of the reasoning techniques previously given were made directly into
cards; constraint, assumption, risk and trade-off. Problem structuring and option gen-
eration would be triggered by using these techniques and looking at the design activi-
ties; context, problem and solution.

Three reflection periods were created at 15 mins, 45 mins and 1 hour and 45 mins.
In these pre-set times, the students in the test groups were asked to use the cards to
prompt discussion and support collaboration. The cards were paired with a table show-
ing suggested questions to ask. Combining the cards enables different questions, such
as: which constraints cause design problems? The control groups performed the same
assignment without the card game, nor having pre-set reflection periods to revise their
discussions.

 A deductive analysis approach is used for coding the transcripts. The coding
scheme is based on the design activities and reasoning techniques. The results of the
experiment are analysed using qualitative measures, in this case with discourse analysis
performed on the transcripts.

3.2 Results

In this section the results of the experiment are shown. The results show that there
are significant differences between the control and test groups, supporting the theory
that reasoning techniques influence design reasoning in a positive manner by having
them use these techniques more.

Design Session Length.
The first and most obvious difference is the time taken for the design session between

the control and test groups. Though all groups were given two hours to complete their

session, it is mostly the test group which took full advantage of this (Table 1). Half of
the control groups finished their design before the 1 ½ hour mark. Only one test group
did the same. From the audio recording, we conclude that this was due to a misunder-
standing, as the group believed they had already breached the two hour mark. One test
group even surpassed the two hour mark by almost half an hour.

Table 1. - Design session times

Control Group Time Test Group Time
C1 1:43:51 T1 2:01:23
C2 1:57:15 T2 1:23:00
C3 1:22:47 T3 1:59:56
C4 1:13:39 T4 2:24:42
C5 1:17:20 T5 1:54:48
C6 2:05:33 T6 1:51:34

Card Game Influence.
To establish if there are any noticeable differences in the use of the reasoning tech-

niques, the frequencies in which these were used are measured and compared (Table
2). The results show that there is a noticeable difference in the frequencies in which the
reasoning techniques are used. From the techniques directly influenced by the cards
especially assumption and risk analysis are consistently more used by the test groups.
Option generation and problem structuring, which are indirectly influenced by the
cards, are also more prevalent with the test groups. The test groups on average perform
75% more reasoning than the control groups.

Table 2. - Design reasoning techniques frequencies

Analysis techniques T1 T2 T3 T4 T5 T6 Total
Assumption analysis 14 6 9 5 8 7 49
Constraint analysis 7 9 2 7 8 10 43
Risk analysis 6 7 6 5 5 5 34
Trade-off analysis 5 2 2 4 2 1 16
Option generation 19 2 11 6 6 8 52
Problem structuring 33 19 24 25 20 25 146

Total 84 45 54 52 49 56 340
 C1 C2 C3 C4 C5 C6 Total

Assumption analysis 2 0 2 3 1 3 11
Constraint analysis 4 6 10 7 7 5 39
Risk analysis 2 2 3 4 1 3 15
Trade-off analysis 1 1 0 3 0 1 6
Option generation 1 3 4 6 9 7 30
Problem structuring 15 20 18 12 15 13 93

Total 25 39 37 35 33 32 194

Table 3. - Design reasoning elements – No. of Distinct Identification

Design
reasoning
elements

T1 T2 T3 T4 T5 T6 Total
Dis-
tinct
Ele-
ments
Identi-
fied

Assump-
tion

15 15 6 6 10 6 5 5 11 8 7 7 47

Constraint 9 8 17 8 5 4 9 7 13 8 18 7 42
Risk 6 6 7 6 7 5 7 7 7 7 8 6 37
Total 126

 C1 C2 C3 C4 C5 C6
Assump-
tion

2 2 1 1 2 2 5 5 1 1 3 3 14

Constraint 4 4 12 8 17 9 9 5 22 8 16 8 42
Risk 2 2 2 2 3 3 4 4 1 1 3 3 15
Total 71

Constraint analysis on the other hand is about even among the test and control
groups, and does not show the same rise in use of reasoning techniques. To better un-
derstand these results, we examine the distinct values of the individual reasoning ele-
ments. The reasoning techniques themselves are overarching and can contain several
elements, and elements can be repeated. The distinct number of design elements iden-
tified by the two groups is given in Table 3. The groups can repeatedly discuss the same
assumption for instance, but the number of distinct assumptions identified shows that
the reasoning techniques help designers find new design information. The distinct de-
sign elements are shown in the grey columns in Table 3. The percentage difference
shows 77% more identification of distinct reasoning elements by the test groups.

Our results show that assumptions and risks occur with a similar frequency as with
their reasoning techniques. The constraints are shown to have an even more similar
frequency across the test and control groups, there is hardly any difference at all.

Although trade-off analysis shows an obvious difference, it is the lowest in fre-
quency with both test and control groups. This is a surprising result as option generation
shows a much greater difference in frequency. However, trade-off analysis, which con-
cerns options, does not. To investigate these results we need to look at the elements
which make up trade-offs; pros and cons (Table 4). Taking a closer look towards the
results, the differences between the test and control group becomes more obvious. The
frequencies of pros and cons more closely match that of option generation. More pros
and cons for various options are given; only the combination of both pro and con is
scarce. As the coding scheme used requires a trade-off to have both a pro and a con for
an option explains why trade-off analysis has such low frequencies. Interestingly, in
comparison to the control groups, the test groups use both more pro with 53% more,
but also far more cons to argue about their options, tripling the amount with 269%
compared to the control group.

Table 4. - Trade-off analysis, pros and cons elements

 T1 T2 T3 T4 T5 T6 Total
Trade-
off
analy-
sis

5 2 2 4 2 1 16

Pros 17 4 10 8 4 3 46
Cons 10 2 8 13 9 6 48

 C1 C2 C3 C4 C5 C6 Total
Trade-
off
analy-
sis

1 1 0 3 0 1 6

Pros 2 4 5 12 3 4 30
Cons 1 2 0 4 2 4 13

Looking at the identified design problems, options and solutions we find that mostly

the design options have increased in the test groups compared to the control group, with
a percentage difference of 56% (Table 5). This corroborates with the increase in option
generation established before. The identified design problems and solutions have in-
creased with the test groups, but not by much: a percentage difference of 34% in design
problems, and 24% with design solutions.

Table 5. - Design problem, option and solution elements

 T1 T2 T3 T4 T5 T6 Total
Design
Prob-
lems

29 10 17 17 8 13 94

Design
Options

42 9 33 28 18 18 148

Design
Solu-
tions

29 10 17 17 8 11 92

 C1 C2 C3 C4 C5 C6 Total
Design
Prob-
lems

3 8 13 19 16 11 70

Design
Options

5 10 14 18 25 23 95

Design
Solu-
tions

4 9 13 20 17 11 74

4 Discussion

The results of the experiment show significant differences in applying reasoning be-
tween the control and test groups. The cards overall trigger more design reasoning in
the test groups. More assumptions and risks are identified, more options are generated
and more key issues are defined with problem structuring. In this section we analyse
the results and discuss their meaning.

4.1 Thorough Reasoning vs Satisficing

 A first result is the marked difference in the time spent in design. The test groups
took longer for their design session, while the control groups took less time overall.
Using the cards, the test groups found more things to discuss and reason. The control
group is more partial to satisficing behaviour, which is a phenomenon where designers
do not look exhaustively for every potential solution to a problem, but go with the first
solution that is satisfying [10, 27]. This suggests that due to the cards, the test groups,
were reminded to reason with the reasoning topics, and were encouraged to explore
more about the design. The test groups were less easily satisfied with their decisions
since they found more issues that they had to address. We can see this difference in
attitude by examining the transcripts.

The test groups often mention how they have run out of time before they are com-
pletely satisfied with their design. As can be seen in the extract of T5 (), a new design
issue was mentioned, but there was no time to solve it.

The control groups on the other hand, especially those which did not reach the two
hour mark, simply ran out of issues to resolve. In the extract of C5 (Fig. 2) they were
touching on design issues that they needed to solve, but they convinced themselves that
what they had was good enough (satisficing). They did not go further into detail to
explore more about that decision but instead ended the discussion.

The control groups were easier satisfied with their decisions and design, even when
they had not reached the full two hours given. For the test groups, the card game stim-
ulated the designers to keep refining their design and consider their decisions, and often
the time given was too short for these groups to fully explore the design.

4.2 How Cards Influence Design Discourse

The cards directly influence the design discourse in two ways. Firstly, the cards pro-
vide inspirations for students to investigate a certain topic. Secondly, the students use
the cards to reassess their previous discussion by classifying it in card terms, e.g. a
system rule is later identified as having been a constraint.

Examples like the extract from T3 show how these cards are used for inspiration
(Fig. 2). Person 2 was looking over the cards searching for issues to discuss and came
up with a risk, which needed to be clarified for the other person. This risk made the
designers reconsider an earlier assumption, that the program is a web-based application,
which later turned into a nearly 5 minute long trade-off discussion.

With the extract from T2 we can see the cards being used for classification (Fig. 2).
Here they had just discussed a problem and found a solution for it. But when they reas-
sessed the discussion as a problem, they realized that in order to solve the problem, they
had also identified risks and used assumptions.

4.3 Reasoning with Risk, Assumption and Trade-off

A main purpose of the reasoning card game is to prompt the students to consider
design elements. The results of the experiment show that especially risks and assump-
tions are considered more by the test groups. Trade-off analysis does not show much
difference, whereas constraint remained the same.

T5 (1:52:06-1:52:15)
PERSON 2: So we have we got everything. I think maybe only the traffic light is not taken into account and that's

connected to intersection.
PERSON 1: Yeah. Definitely need to be there just make it here. And do we also model dependencies.
PERSON 2: Okay I think we don't have the time to put in. Maybe we can sketch it.

C5 (1:16:38 – 1:17:19)
PERSON 2: Oh ok. Do we have to say something more? Are we done actually? Or do they actually also wanna

know how we include the notation and such, because-
PERSON 1: No they also get the documents, so they can see
PERSON 2: Yeah ok, but maybe how we come up with the- I don’t know. No? isn’t necessary?
PERSON 3: Mm
PERSON 1: It’s just use UML notation, for all
PERSON 2: For all?
PERSON 1: No, and lifecycle model, and petri net. No, no petri net
PERSON 2: Perhaps petri net. Ok, shall we- shall I just?
PERSON 1: Yeah
PERSON 2: Ok

T3 (0:20:31-0:21:10)
PERSON 2: HTML 5 yeah? Information would of course [inaudible] constraints or risk or trade-offs, we have to

make- a risk might be of course that- of course there is a [inaudible] so while you are travelling. For example, when you
have an older device that could be a problem of course. So then you couldn’t use the navigation maybe, the- well,
[inaudible] right?

PERSON 1: What do you mean exactly? For example.
PERSON 2: Yeah well, for example, if you are travelling and you want to use the application. You want to use the

traffic simulator, then of course that might be the case that your device is not suitable for it. For example. So, on the
other hand-

T2 (0:28:14-0:28:28)
PERSON 1: So this was a problem
PERSON 3: This was a problem
PERSON 1: Yeah
PERSON 2: Yeah. Because [inaudible]
PERSON 1: And a risk right
PERSON 2: A constraint? Yeah but it was also like an assumption that you have a minimum length. That is our

assumption right or-
PERSON 3: Yeah we created that now, and that’s ok because it’s our own system

T4 (1:25:13-1:26:05)
PERSON 1: So that's the trade-off. The other side is good to have in the cloud because you can easily push a new

update every hour if you want but you need really really strong server for all this simulations. Now professor did not
say how much money she has. So it can be also. There can be also an option to pay for usage of this server for every
simulation or for every hour of simulation.

PERSON 2: I don't think so.
PERSON 1: There can be an option. But it can be also very expensive so when I think about everything I think that is

cheaper and easier to have local stand-alone version.
PERSON 2: Yeah.
PERSON 3: Yeah.

Fig. 2. - Transcript Extracts

In many cases, the test groups considered the design scope to be clear at first glance.
But when they started using the cards and thought more about the design topics, they
found out that it actually is more complicated than they first realized. The designers
reflect on their previous ideas, discuss and redefine them, which clearly shows that the
cards trigger reasoning in designers.

For the control groups it is clear that considering assumptions and risks for decision
making about the design is not at the forefront of their minds, as indicated by their low
distinct element frequencies. With the test groups, the cards remind the designers to
take these considerations into account, as again can be seen in T3 where person 2 lists
the cards, which prompts him to identify a risk (Fig. 2).

For the trade-off analysis few pros and cons were discussed, contributing to the low
number of trade-offs. However, the test groups generated many pros, and especially
more cons to argue against the solution options than the control group. The control
groups also generate many pros, but fewer cons (Table 4). This suggests that the control
groups are more concerned with arguments that support their options, or arguing why
these are good, instead of looking at potential problems that could invalidate their op-
tions (cons). The test groups are more critical of their choices and look at options from
different viewpoints. The extract of T4 shows part of a larger trade-off analysis in which
several options are heavily discussed: mostly to have either a standalone program, or
one which is cloud or web-based (Fig. 2). In this part, person 1 mentions that a pro for
a cloud based program would be that you can update every hour, but a con is that a
strong server is necessary which would be costly. The person then proceeds to suggest
another option to ask users to pay for the usage of the server. This is not well-received
by the group and person 1 admits that this option would still be a very expensive one
and gives a pro to their first option: a local standalone version to which the others agree.

Even though the group eventually went with their first option, they took the time to
explore multiple options and critically assess them by providing both pros and cons.
The control groups had fewer of such discussions.

4.4 Reasoning with Design Context, Problems and Solutions

The effect of the card game is to combat satisficing behaviour and lack of design
reasoning by stimulating the designers to reconsider their options and decisions, ulti-
mately taking more time to delve into the issues. And yet, when we look at the design
problems and design solutions identified by both groups, the percentage difference is
much lower than that of the other elements, such as options and problems structuring.
The cards prompt designers to consider their problems and explore more of the design,
but problems are not identified as much by the test groups, as the other reasoning tech-
niques are used.

Design problems identification can be influenced by other factors, such as design
strategy and designer experience. Design strategies such as problem-oriented, or solu-
tion-oriented can influence the information seeking behaviour of designers [23]. The
approach used for problem-solving, whether to focus on finding problems or solutions
first, seems to have more of an impact on the design problems being identified. When
comparing groups with similar strategies, the influence of the cards becomes clearer.

As an example, we have groups T2 and C1. Both use a satisficing strategy, where
they actively avoided going into the details. They preferred to view a problem as being
outside of their scope. Their option generation and trade-off analysis results are very
similar. But the problem structuring, risk, assumption and constraint analysis of T2 is
at least double of that of C1. Despite their adherence to a minimum satisficing strategy,
the cards prompted T2 to recognize problems which often resulted from identified risks
and constraints, for which they made assumptions to simplify the problem and solution.

It seems that the design strategy used by the groups is a clearer indicator for how
many and what kind of design problems are identified, while the cards influence how
the designers solve these problems.

4.5 Constraint Identification

The card game seems to have no influence on constraint analysis. The individual
constraints identified by both groups are the same. This result in itself is interesting,
considering the effect of the cards on the other reasoning techniques. The question here
is why constraint analysis is different. One possible explanation for this is that the very
nature of constraints, i.e. limitations on the design, as seen by novice designers, is in-
trinsically bound to the requirements. When thinking about design and what the system
must accomplish, novice designers think of what is required, and what is not required.
As a result both test and control groups identify constraints as things that are not al-
lowed or rules that the system must follow. What is interesting here is that both groups
identify much of the same constraints, with many coming directly from the require-
ments in the assignment, even taking on the same wording.

We find that both test and control groups frequently take over the literal requirements
presented in the text as constraints. To give a more detailed representation of this, for
the test groups there are 11 identified constraints which are shared in various degrees
amongst the groups. There are 11 other constraints which they do not share and had to
be inferred from the assignment, with 5 of these being identified by only one group.
The control groups share 12 constraints from the text, and only 5 are other.

This then goes to explain the similar results when it comes to constraint analysis,
many of them are found literally in the text of the assignment and require minimal effort
to find. It is easy to see why these constraints would be in the text as requirements, as
it is to the clients benefit to give clear instructions on what the program should and
should not do. This means that constraints are easier to identify, causing the cards to
have little influence, as these are given as requirements. The other techniques, such as
assumptions and risks, must all be inferred from the text and are not clearly given. The
effect of the cards is more obviously shown there.

5 Threats to Validity

We recognise the threats to validity in this research, especially those revolving around
generalization. For the transcripts, discourse analysis was used to interpret the text,
which in itself is subjective and reliant on the view of the researcher [28]. This paper is

an empirical research in the form of a case study involving experiments. Empirical re-
search is one of the main research methods within the software architecture research
field, relying on evidence to support the research results. We address the internal and
external validity of the results acknowledging any limitations which may apply [29].

5.1 Internal validity

Internal validity is about how far a valid conclusion can be made from the experi-
ment and data collected. Firstly, this research makes use of the Irvine assignment which
has been used and tested in other research and is well-known in the field of design
reasoning [26]. This limits the results of this research to those applicable to this kind of
design assignment.

Secondly, participants were randomly selected for their situational representative-
ness, as students of software architecture, and the result of this research is limited to
novice designers in the Netherlands. However, we have found convincing results to
show that the card game made a difference to the reasoning capability of novice de-
signers. We argue that these two limitations do not impose a major threat to the inter-
pretation of the evidence that the cards have a positive effect on design reasoning by
novices.

5.2 External validity

External validity is about to what extent the results from the case study can be gen-
eralized across other published design reasoning articles. The results of this case study
are supported by similar experiments [4, 12, 13, 30], showing that in the case of novice
designers, being made aware of reasoning techniques actively counteracts satisficing
behaviour and results in performing more design reasoning.

But the results also show a discrepancy when it comes to constraints, which did not
show any difference across test and control groups. There are two possibilities for this
discrepancy, either a requirement naturally leads to constraints, or the assignment itself
is too clearly defined by explicitly including constraints. Whether the constraint card
would have any influence on an assignment which did not mention constraints in their
requirements cannot be proven at this point.

For the design problems and solutions there seems to be a design strategy component
which has an influence on the amount of design problems being identified. This makes
it unclear how much of an influence the cards have.

5.3 Reliability

Reliability is about ensuring that the results found in the study are consistent, and
would be the same if the study is conducted again. To ensure that the coding of the
transcripts is reliable it was tested for inter-reliability using Cohen’s kappa coefficient
[31] to measure the level of agreement. The transcripts were each coded by two re-
searchers using Nvivo 10. The average kappa coefficient of each of the transcripts was

above 0.6 which is considered to show a good level of agreement. The average of all
transcripts combined is 0.64.

6 Conclusion

Software design is a complicated problem-solving process, which due to its effect
on the later stages of software development, is one of the most important stages to con-
sider. Problems occurring at this stage which are not solved immediately will result in
problems later during development or implementation, costing money and time. Prob-
lems with software design can result from problematic design decisions, which are eas-
ily influenced by designer biases. These biases can be avoided by using more logical
reasoning.

In this paper, we propose a simple card game to help novice designers’ use design
reasoning. Design reasoning means using logic and rational thinking in order to make
decisions, something which people as a whole find difficult due to the usual way they
think. In order to prompt design reasoning several common reasoning techniques were
chosen to be represented by the card game. These techniques are; problem structuring,
option generation, constraint analysis, risk analysis, trade-off analysis, and assumption
analysis.

To study the effect of the card game, we designed an experiment based on 12 student
groups following a software architecture course. These 12 groups were divided into 6
control and 6 test groups. The 12 groups were asked to construct a software design. The
transcripts of these experiments were analysed using discourse analysis. The results
show a notable difference between the test and control groups on nearly all technique
usages. The effect of the cards is to trigger the designers to use design reasoning tech-
niques to reason with different aspects of design, to prompt new discussion topics, or
to reconsider previous discussions. In all manners, the cards trigger reasoning and lead
to more discussion and reconsideration of previous decisions. Those who use the card
game generally identify more distinct design elements and spend more time reasoning
with the design. Only the constraint analysis technique shows no obvious difference.

Further research includes to study the effect of the card game to professional design-
ers, i.e., those who are experienced in the field. Professionals have more experience.
Therefore, it would be interesting to observe how such a simple card game works with
people who are more aware of design techniques. The card game could also be used as
a learning tool for novice designers, to further their understanding of software architec-
ture and learn design issues from the reasoning angles.

7 References

1. Rittel, H.W.J., Webber, M.M.: Dilemnas in a general theory of planning. Policy Sci. 4, 155–169
(1973).

2. Klein, G.: Naturalistic Decision Making. Hum. Factors J. Hum. Factors Ergon. Soc. 50, 456–460
(2008).

3. Tang, A., Lago, P.: Notes on Design Reasoning Techniques. (2010).
4. Razavian, M., Tang, A., Capilla, R., Lago, P.: In Two Minds: How Reflections Influence Software

Design Thinking. J. Softw. Evol. Process. Accepted f, (2016).
5. Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design rationale. J. Syst. Softw.

79, 1792–1804 (2006).
6. Lee, J.: Design rationale systems: Understanding the issues. IEEE Expert. Syst. their Appl. 12, 78–

85 (1997).
7. IDEO: IDEO Method Cards, https://www.ideo.com/by-ideo/method-cards/.
8. Smart Decisions: Smart Decisions: A Software Architecture Design Game,

http://smartdecisionsgame.com/#.
9. Grenning, J.: Planning poker or how to avoid analysis paralysis while release planning. Hawthorn

Woods Renaiss. Softw. Consult. 1–3 (2002).
10. Tang, A., van Vliet, H.: Software Designers Satisfice. In: Weyns, D., Mirandola, R., and Crnkovic,

I. (eds.) Software Architecture: 9th European Conference, ECSA 2015, Dubrovnik/Cavtat, Croatia,
September 7-11, 2015. Proceedings. pp. 105–120. Springer International Publishing,
Switzerland,Cham (2015).

11. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on empirical
results of interviews with software designers. Inf. Softw. Technol. 49, 637–653 (2007).

12. Tang, A., Tran, M.H., Han, J., Van Vliet, H.: Design reasoning improves software design quality.
In: Becker, S., Plasil, F., and Reussner, R. (eds.) Quality of Software Architectures. Models and
Arhcitectures. 4th International Conference on the Quality of Software-Architectures, QoSA 2008,
Germany, Karlsruhe. pp. 28–42. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).

13. Tang, A., van Vliet, H.: Software Architecture Design Reasoning. In: Software Architecture
Knowledge Management. pp. 155–174 (2009).

14. Stacy, W., MacMillan, J.: Cognitive bias in software engineering. Commun. ACM. 38, 57–63
(1995).

15. Tang, A.: Software Designers, Are You Biased? In: Proceedings of the 6th International Workshop
on SHAring and Reusing Architectural Knowledge. pp. 1–8. ACM, USA, New York (2011).

16. Tang, A., Lau, M.F.: Software architecture review by association. J. Syst. Softw. 88, 87–101
(2014).

17. Kahneman, D.: Thinking, Fast and Slow. Penguin Books, 2012, UK, London (2011).
18. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. BasicBooks, USA,

New York (1983).
19. Stanovich, K.E.: Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a

tri-process theory? In: In Two Minds: Dual Processes and Beyond. pp. 55–88. Oxford University
Press (2009).

20. Poort, E.R., Van Vliet, H.: Architecting as a risk- and cost management discipline. In: Proceedings
- 9th Working IEEE/IFIP Conference on Software Architecture, WICSA 2011. pp. 2–11 (2011).

21. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice: Third Edition. Addison-
Wesley Professional, USA, Boston (2012).

22. Lago, P., van Vliet, H.: Explicit assumptions enrich architectural models. In: Proceedings of the
27th International Conference on Software Engineering, 2005. ICSE ’05. pp. 206–214 (2005).

23. Restrepo, J., Christiaans, H.: Problem structuring and information access in design. J. Des. Res. 4,
1551–1569 (2004).

24. Simon, H.A.: The structure of ill structured problems. Artif. Intell. 4, 181–201 (1973).
25. UCI: Studying Professional Software Design, http://www.ics.uci.edu/design-workshop/.
26. Petre, M., van der Hoek, A.: Software Designers in Action: A Human-Centric Look at Design

Work, (2013).
27. Simon, H.A.: Rationality as Process and as Product of a Thought. Am. Econ. Rev. 68, 1–16 (1978).
28. Horsburgh, D.: Evaluation of qualitative research. J. Clin. Nurs. 12, 307–312 (2003).
29. Galster, M., Weyns, D.: Emperical Research in Software Architecture. In: 13th Working IEEE/IFIP

Conference on Software Architecture, Italy, Venice. pp. 11–20 (2016).
30. Van Heesch, U., Avgeriou, P., Tang, A.: Does decision documentation help junior designers

rationalize their decisions? A comparative multiple-case study. J. Syst. Softw. 86, 1545–1565
(2013).

31. Cohen, J.: Weighted kappa: nominal scale agreement with provision for scaled disagreement or
partial credit. Psychol. Bull. 70, 213–220 (1968).

