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Abstract

In this paper, we discuss necessary and sufficient explanations – the question whether and
why a certain argument or claim can be accepted (or not) – for abstract and structured argu-
mentation. Given a framework with which explanations for argumentation-based conclusions
can be derived, we study necessity and sufficiency: what (sets of) arguments are necessary or
sufficient for the (non-)acceptance of an argument or claim? We will show that necessary and
sufficient explanations can be strictly smaller than minimal explanations, while still providing
all the reasons for a conclusion and we discuss their usefulness in a real-life application.

1 Introduction

In recent years, explainable AI (XAI) has received much attention, mostly directed at new tech-
niques for explaining decisions of (subsymbolic) machine learning algorithms [19]. However, ex-
planations traditionally also play an important role in (symbolic) knowledge-based systems [11].
Computational argumentation is one research area in symbolic AI that is frequently mentioned in
relation to XAI. For example, arguments can be used to provide reasons for or against decisions
[1, 11, 16]. The focus can also be on the argumentation itself, where it is explained whether
and why a certain argument or claim can be accepted under certain semantics for computational
argumentation [8, 9, 10, 20]. It is the latter type of explanations that is the subject of this paper.

Two central concepts in computational argumentation are abstract argumentation frameworks [7]
– sets of arguments and the attack relations between them and structured argumentation frame-
works [3] – where arguments are constructed from a knowledge base and a set of rules and the
attack relation is based on the individual elements in the arguments. The explanations framework
that is introduced in [6] is designed to provide explanations for the (non-)acceptance of arguments
and the claim of an argument in case of a structured setting. However, like the other existing
works on explanations for argumentation-based conclusions, the framework does not account for
findings from the social sciences on human explanations [16].

One of the important characteristics of explanations provided by humans is that they select
the explanation from a possible infinite set of explanations [16]. In this paper we look at how to
select minimal,1 necessary and sufficient explanations for the (non-)acceptance of an argument.
To this end we will introduce variations to the basic framework from [6] that will provide neces-
sary or sufficient explanations for both abstract and structured argumentation (i.e., ASPIC+[18]).
Intuitively, a necessary explanation contains the arguments that one has to accept in order to
accept the considered argument and a sufficient explanation contains the arguments that, when

To appear in the proceedings of the 16th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU’21).

1Interpreting [16]’s simplicity as minimality.
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accepted, guarantee the acceptance of the considered argument. We will show that such expla-
nations exist in most cases and how these relate to the basic explanations from [6] as well as to
minimal explanations as introduced in [8]. Moreover, we will discuss a real-life application from
the Dutch National Police, where the necessary and sufficient explanations will reduce the size of
the provided explanations in a meaningful way.

The paper is structured as follows. We start with a short overview of related work and present
the preliminaries on abstract and structured argumentation and the basic explanations from [6].
Then, in Section 4 we introduce necessary and sufficient explanations and study how these relate to
the better known minimal explanations. In Section 5 we show how a real-life application benefits
from these explanations and we conclude in Section 6.

2 Related Work

We are interested in local explanations for computational argumentation: explanations for a spe-
cific argument or claim. We work here with the framework from [6] for several reasons. Often,
explanations are only defined for a specific semantics [8, 9] and can usually only be applied to
abstract argumentation [9, 12, 20],2 while the framework from [6] can be applied on top of any
argumentation setting (structured or abstract) that results in a Dung-style argumentation frame-
work. Furthermore, when this setting is a structured one based on a knowledge base and set of
rules (like ASPIC+ or logic-based argumentation [3]), the explanations can be further adjusted
(something which is not considered at all in the literature). To the best of our knowledge, this
is the first approach to explanations for formal argumentation in which necessary and sufficient
explanations are considered and integrated into a real-life application.

3 Preliminaries

An abstract argumentation framework (AF) [7] is a pair AF = 〈Args,Att〉, where Args is a set of
arguments and Att ⊆ Args×Args is an attack relation on these arguments. An AF can be viewed
as a directed graph, in which the nodes represent arguments and the arrows represent attacks
between arguments.

A BCD E F

Figure 1: Graphical representation of the AF AF1.

Example 1. Figure 1 represents AF1 = 〈Args1,Att1〉 where Args1 = {A,B,C,D,E, F} and Att1 =
{(B,A), (C,B), (C,D), (D,C), (E,B), (E,F ), (F,E)}.

Given an AF, Dung-style semantics [7] can be applied to it, to determine what combinations
of arguments (called extensions) can collectively be accepted.

Definition 1. Let AF = 〈Args,Att〉 be an argumentation framework, S ⊆ Args a set of arguments
and let A ∈ Args. Then: S attacks A if there is an A′ ∈ S such that (A′, A) ∈ Att, let S+ denote
the set of arguments attacked by S; S defends A if S attacks every attacker of A; S is conflict-free
if there are no A1, A2 ∈ S such that (A1, A2) ∈ Att; and S is an admissible extension (Adm) if it
is conflict-free and it defends all of its elements.

An admissible extension that contains all the arguments that it defends is a complete extension
(Cmp). The grounded extension (Grd) is the minimal (w.r.t. ⊆) complete extension; A preferred
extension (Prf) is a maximal (w.r.t. ⊆) complete extension; and A semi-stable extension (Sstb) is a

2These explanations do not account for the sub-argument relation in structured argumentation. For example,
in structured argumentation one cannot remove specific arguments or attacks without influencing other argu-
ments/attacks.
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complete extension for which S∪S+ is ⊆-maximal. Sem(AF) denotes the set of all the extensions
of AF under the semantics Sem ∈ {Adm,Cmp,Grd,Prf,Sstb}.

In what follows we will consider an argument accepted if it is part of at least one extension
and non-accepted if it is not part of at least one extension.3

Definition 2. Where AF = 〈Args,Att〉 is an AF, Sem a semantics such that Sem(AF) 6= ∅, it is
said that A ∈ Args is:

• accepted if A ∈
⋃

Sem(AF): there is some Sem-extension that contains A;

• non-accepted if A /∈
⋂

Sem(AF): A is not part of at least one Sem-extension.

Example 2. For AF1 we have that Grd(AF1) = {∅} and there are four preferred and semi-stable
extensions: {A,C,E}, {A,C, F}, {A,D,E} and {B,D,F}. Therefore, all arguments from Args1
are accepted and non-accepted for Sem ∈ {Prf,Sstb}.

3.1 ASPIC+

For our discussion on explanations for structured settings we take ASPIC+ [18] which allows
for two types of premises – axioms that cannot be questioned and ordinary premises that can
be questioned – and two types of rules – strict rules that cannot be questioned and defeasible
ones. We choose ASPIC+ since it allows to vary the form of the explanations in many ways (see
Section 3.2 and [6]).

An ASPIC+ setting starts from an argumentation system (AS = 〈L,R, n〉), which contains
a logical language L closed under negation (¬), a set of rules R = Rs ∪ Rd consisting of strict
(Rs) and defeasible (Rd) rules and a naming convention n for defeasible rules. Arguments are
constructed in an argumentation setting from a knowledge base K ⊆ L which consists of two
disjoint subsets K = Kp ∪ Kn: the set of axioms (Kn) and the set of ordinary premises (Kp).

Definition 3. An argument A on the basis of a knowledge base K in an argumentation system
〈L,R, n〉 is:

1. φ if φ ∈ K, where Prem(A) = Sub(A) = {φ}, Conc(A) = φ, Rules(A) = ∅ and TopRule(A) =
undefined;

2. A1, . . . , An  ψ, where  ∈ {→,⇒}, if A1, . . . , An are arguments such that there exists a
rule Conc(A1), . . . ,Conc(An) ψ in Rs if  =→ and in Rd if  = ⇒.

Prem(A) = Prem(A1)∪. . .∪Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1)∪. . .∪Sub(An)∪{A};
Rules(A) = Rules(A1)∪. . .∪Rules(An)∪{Conc(A1), . . . ,Conc(An) ψ}; DefRules(A) = {r ∈
Rd | r ∈ Rules(A)}; and TopRule(A) = Conc(A1), . . . ,Conc(An) ψ.

The above notation can be generalized to sets. For example, where S is a set of arguments
Prem(S) =

⋃
{Prem(A) | A ∈ S} and Conc(S) = {Conc(A) | A ∈ S}.

Attacks on an argument are based on the rules and premises applied in the construction of
that argument.

Definition 4. Let A and B be two arguments, we denote ψ = −φ if ψ = ¬φ or φ = ¬ψ. A
attacks an argument B iff A undercuts, rebuts or undermines B:

• A undercuts B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) such that B′’s top rule r
is defeasible, it denies a rule;

• A rebuts B (on B′) iff Conc(A) = −φ for some B′ ∈ Sub(B) of the form B′′1 , . . . , B
′′
n ⇒ φ, it

denies a conclusion;

3In [6], four acceptance strategies are considered, the other two are not relevant for our study on necessity and
sufficiency and are therefore not introduced here.
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• A undermines B (on φ) iff Conc(A) = −φ for some φ ∈ Prem(B) \ Kn, it denies a premise.

Argumentation theories and their corresponding Dung-style argumentation frameworks can
now be defined.

Definition 5. An argumentation theory is a pair AT = 〈AS,K〉, where AS is an argumentation
system and K is a knowledge base.

From an argumentation theory AT the corresponding AF can be derived such that AF(AT) =
〈Args,Att〉, where Args is the set of arguments constructed from AT and (A,B) ∈ Att iff A,B ∈ Args
and A attacks B as defined in Definition 4.

Example 3. Let AS1 = 〈L1,R1, n〉 where the rules in R1 are such that, with K1 = K1
n = {r, s, t, v}

the following arguments can be derived:4

A : s, t
d1⇒ u B : p,¬q d2⇒ ¬n(d1) C : r, s

d3⇒ q

D : v
d4⇒ ¬q E : r, t

d5⇒ ¬p F : v
d6⇒ p.

The graphical representation of the corresponding argumentation frameworkAF(AT1) with AT1 =
〈AS1,K1〉 is the graph from Figure 1.

Dung-style semantics (Definition 1) can be applied in the same way as they are applied to
abstract argumentation frameworks (recall Example 2). In addition to (non-)acceptance of argu-
ments, in a structured setting we can also consider (non-)acceptance of formulas:

Definition 6. Let AF(AT) = 〈Args,Att〉 be an AF, based on AT, let Sem be a semantics such
that Sem(AF) 6= ∅ and let φ ∈ L. Then φ is:

• accepted : if φ ∈
⋃

Concs(Sem(AF(AT))), that is: there is some argument with conclusion φ
that is accepted;

• non-accepted : if φ /∈
⋂

Concs(Sem(AF(AT))), that is: there is some Sem-extension without
an argument with conclusion φ.

Example 4. As was the case for arguments (recall Example 2), all formulas in {p,¬p, q,¬q, r, s, t, u, v}
are accepted and {p,¬p, q,¬q, u} are also non-accepted.

3.2 Basic explanations

In [6] four types of explanations for abstract and structured argumentation were introduced. These
explanations are defined in terms of two functions: D, which determines the arguments that are
in the explanation and F, which determines what elements of these arguments the explanation
presents. For the basic explanations in this paper, we instantiate D with the following functions,
let A ∈ Args and E ∈ Prf(AF) for some AF AF = 〈Args,Att〉:5

• Defending(A) = {B ∈ Args | B defends A} denotes the set of arguments that defend A and
Defending(A, E) = Defending(A) ∩ E denotes the set of arguments that defend A in E .

• NoDefAgainst(A, E) = {B ∈ Args | B attacks A and E does not defend Aagainst B} denotes
the set of all attackers of A that are not defended by E .

The explanations are defined for arguments and formulas.

4We ignore the arguments based on the elements from K1, since these neither attack nor are attacked by any
argument.

5We write that B ∈ Args defends A ∈ Args if it attacks an attacker of A or it defends an argument that defends
A.
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Definition 7. Let AF = 〈Args,Att〉 be an AF and suppose that A ∈ Args [resp. φ ∈ L] is accepted
w.r.t. Sem. Then:

SemAcc(A) = {Defending(A, E) | E ∈ Sem(AF) and A ∈ E}.
SemAcc(φ) = {F(Defending(A, E)) | E ∈ Sem(AF) such that A ∈ E and

Conc(A) = φ} .

An acceptance explanation, for an argument or formula, contains all the arguments that defend
the argument (for that formula) in an extension. If it is an explanation for a formula, the function
F can be applied to it.

Definition 8. Let AF = 〈Args,Att〉 be an AF and suppose that A ∈ Args [resp. φ ∈ L] is
non-accepted w.r.t. Sem. Then:

SemNotAcc(A) =
⋃

E∈Sem(AF) and A/∈E

NoDefAgainst(A, E).

SemNotAcc(φ) =
⋃

A∈Args and Conc(A)=φ

⋃
E∈Sem(AF) and A/∈E

F(NoDefAgainst(A, E)).

A non-acceptance explanation contains all the arguments that attack the argument [resp. an
argument for the formula] and to which no defense exists in some Sem-extension. For a formula F
can be applied again.

The function F can be instantiated in different ways. We recall here some of the variations
introduced in [6].

• F = id, where id(S) = S. Then explanations are sets of arguments.

• F = Prem. Then explanations only contain the premises of arguments (i.e., knowledge base
elements).

• F = AntTop, where AntTop(A) = 〈TopRule(A),Ant(TopRule(A))〉. Then explanations con-
tain the last applied rule and its antecedents.

• F = SubConc, where SubConc(A) = {Conc(B) | B ∈ Sub(A), Conc(B) /∈ K ∪ {Conc(A)}}.
Then the explanation contains the sub-conclusions that were derived in the construction of
the argument.

Example 5. Consider the AF AF(AT1) from Examples 1 and 3. We have that:

• PrfAcc(A) ∈ {{C}, {E}, {C,E}} and PrfAcc(B) = {D,F};

• PrfNotAcc(A) = {B,D,F} and PrfNotAcc(B) = {C,E}.

If we take F = Prem, then: PrfAcc(u) ∈ {{r, s}, {r, t}, {r, s, t}}, PrfAcc(¬n(d1)) = PrfNotAcc(u) =
{v} and PrfNotAcc(¬n(d1)) = {r, s, t}.

A conclusion derived from an argumentation system can have many causes and therefore many
explanations. When humans derive the same conclusion and are asked to explain that conclusion
they are able to select the explanation from all the possible explanations. In the social sciences
a large amount of possible selection criteria that humans might apply have been investigated,
see [16] for an overview. In this paper we focus on necessity and sufficiency.

4 Necessity and Sufficiency

Necessity and sufficiency in the context of philosophy and cognitive science are discussed in, for
example, [14, 15, 21]. Intuitively, an event Γ is sufficient for ∆ if no other causes are required for
∆ to happen, while Γ is necessary for ∆, if in order for ∆ to happen, Γ has to happen as well.
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In the context of logical implication (denoted by →), one could model sufficiency by Γ → ∆ and
necessity by ∆→ Γ [13].

In the next sections we formulate these logical notions in our argumentation setting. We will
assume that the arguments on which the explanation for an argument A is based are relevant for
A: B ∈ Args [resp. S ⊆ Args] is relevant for A if B (in)directly attacks or defends A (i.e., there is
a path from B to A) and does not attack itself [resp. for each C ∈ S, C is relevant for A].

4.1 Necessity and Sufficiency for Acceptance

In the context of argumentation, a set of accepted arguments is sufficient if it guarantees, indepen-
dent of the status of other arguments, that the considered argument is accepted, while an accepted
argument is necessary if it is impossible to accept the considered argument without it.

Definition 9. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted (w.r.t. some Sem).
Then:

• S ⊆ Args is sufficient for the acceptance of A if S is relevant for A, S is conflict-free and S
defends A against all its attackers;

• B ∈ Args is necessary for the acceptance of A if B is relevant for A and if B /∈ E for some
E ∈ Adm(AF), then A /∈ E .

We denote by Suff(A) = {S ⊆ Args | S is sufficient for the acceptance of A} the set of all sufficient
sets of arguments for the acceptance of A and by Nec(A) = {B ∈ Args | B is necessary for the
acceptance of A} the set of all necessary arguments for the acceptance of A.

Example 6. In AF1 both {C} and {E} are sufficient for the acceptance of A but neither is
necessary, while for B, {D,F} is sufficient and D and F are necessary.

Necessary and sufficient explanations are now defined by replacing Defending in the basic
explanations from Section 3.2 with Nec resp. Suff.

Definition 10. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args [resp. φ ∈ L] be accepted. Then
sufficient explanations are defined by:

• Acc(A) ∈ Suff(A);

• Acc(φ) ∈
⋃
{F(Suff(A)) | A ∈ Args and Conc(A) = φ}.

Necessary explanations are defined by:

• Acc(A) = Nec(A);

• Acc(φ) =
⋂
{F(Suff(A)) | A ∈ Args and Conc(A) = φ}.

Example 7. For AF(AT1) we have that sufficient explanations are Acc(A) ∈ {{C}, {E}, {C,E},
{C,F}, {D,E}}, Acc(B) = {D,F}, Acc(u) ∈ {{r, s}, {r, t}, {r, s, t}} and Acc(¬n(d1)) = {v}.
Moreover, necessary acceptance explanations are Acc(A) = ∅, Acc(B) = {D,F}, Acc(u) = {r}
and Acc(¬n(d1)) = {v}.

Next we show that the sets in Suff(A) are admissible and contain all the needed arguments.
Additionally, we look at conditions under which Suff and Nec are empty, as well as the relation be-
tween Suff and Nec. These last results provide the motivation for the necessary formula acceptance
explanation.6

Proposition 1. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. some Sem ∈
{Adm,Cmp,Grd,Prf,Sstb}. Then:

1. For all S ∈ Suff(A), {S,S ∪ {A}} ⊆ Adm(AF);

6Full proofs of our results can be found in Appendix A.
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2. Suff(A) = ∅ iff there is no B ∈ Args such that (B,A) ∈ Att.

3. Nec(A) = ∅ iff there is no B ∈ Args such that (B,A) ∈ Att or
⋂

Suff(A) = ∅.

4. Nec(A) ⊆
⋂

Suff(A).

The next proposition relates the introduced notions of necessity and sufficiency with Defending
and therefore with the basic explanations from Section 3.2.

Proposition 2. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. Sem ∈
{Adm,Cmp,Grd,Prf,Stb}. Then:

• for all E ∈ Sem(AF) such that A ∈ E, Defending(A, E) ∈ Suff(A);

•
⋂
E∈Sem(AF) and A∈E Defending(A, E) = Nec(A).

4.2 Necessity and Sufficiency for Non-Acceptance

When looking at the non-acceptance of an argument A, the acceptance of any of its direct attackers
is a sufficient explanation. However, other arguments (e.g., some of the indirect attackers) might
be sufficient as well. An argument is necessary for the non-acceptance of A, when it is relevant
and A is accepted in the argumentation framework without it. In what follows we will assume
that (A,A) /∈ Att, since otherwise A itself is the reason for its non-acceptance.

We need the following definition for our notion of sufficiency.

Definition 11. Let AF = 〈Args,Att〉 be an AF and let A,B ∈ Args such that A indirectly attacks
B, via C1, . . . , Cn ∈ Args, i.e., (A,C1), (C1, C2), . . . , (Cn, B) ∈ Att. It is said that the attack from
A on B is uncontested if there is no D ∈ Args such that (D,C2i) ∈ Att for i ∈ {1, . . . , n2 }. It is
contested otherwise, in which case it is said that the attack from A is contested in C2i.

The need for the above definition is illustrated in the next example:

Example 8. In AF1, the indirect attacks from D and F on A are contested: the attack from D is
contested in B, since (E,B) ∈ Att and the attack from F is also contested in B since (C,B) ∈ Att.
It is therefore possible that A and D or F are part of the same extension (recall Example 2).

For the definition of necessity for non-acceptance we define subframeworks, which are needed
because an argument might be non-accepted since it is attacked by an accepted or by another
non-accepted argument.7

Definition 12. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args. Then AF↓A = 〈Args\{A},Att∩
(Args \ {A} × Args \ {A})〉 denotes the AF based on AF but without A.

Since indirect attacks might be sufficient for not accepting an argument, but they also might
be contested, the definition of sufficiency for non-acceptance is defined inductively.

Definition 13. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be non-accepted (w.r.t. Sem).
Then:

• S ⊆ Args is sufficient for the non-acceptance of A if S is relevant for A and there is a B ∈ S
such that:

– (B,A) ∈ Att; or

– B indirectly attacks A and that attack is uncontested; or

– B indirectly attacks A and for every argument C in which the attack from B on A
is contested and every D ∈ Args such that (D,C) ∈ Att, there is an S′ ⊆ S that is
sufficient for the non-acceptance of D.

7In terms of labeling semantics (see e.g., [2]) an argument is non-accepted if it is out (i.e., attacked by an in

argument) or undecided.
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• B ∈ Args is necessary for the non-acceptance of A if B is relevant for A and A is accepted
w.r.t. Sem in AF↓B .

We denote by SuffNot(A) = {S ⊆ Args | S is sufficient for the non-acceptanceof A} the set of
all sufficient sets of arguments for the non-acceptance of A and by NecNot(A) = {B ∈ Args |
B is necessary for the non-acceptance of A} the set of all necessary arguments for the non-accep-
tance of A.

Example 9. For AF1 from Example 1 we have that B is both necessary and sufficient for the
non-acceptance of A. Moreover, while D and F are neither sufficient for the non-acceptance of
A, {D,F} is. For the non-acceptance of B we have that C and E are sufficient, but neither is
necessary.

Definition 14. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args [resp. φ ∈ L] be non-accepted.
Then sufficient explanations are defined by:

• NotAcc(A) ∈ SuffNot(A);

• NotAcc(φ) ∈
⋃
{F(SuffNot(A)) | A ∈ Args and Conc(A) = φ};

Necessary explanations are defined by:

• NotAcc(A) = NecNot(A);

• NotAcc(φ) =
⋂
{F(SuffNot(A)) | A ∈ Args and Conc(A) = φ}.

Example 10. ForAF1 we have, for sufficiency NotAcc(A) ∈ {{B}, {D,F}, {B,D,F}}, NotAcc(B) ∈
{{C}, {E}, {C,E}}, NotAcc(u) = {v} and NotAcc(¬n(d1)) ∈ {{r, s}, {r, t}, {r, s, t}} and for ne-
cessity NotAcc(B) = ∅ and NotAcc(u) = {v}.

The next propositions are the non-acceptance counterparts of Propositions 1 and 2. First some
basic properties of sufficiency and necessity for non-acceptance.

Proposition 3. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be non-accepted w.r.t. Sem ∈
{Adm,Cmp,Grd,Prf,Sstb}. Then: SuffNot(A) 6= ∅; and NecNot(A) = ∅ implies that there are at
least two direct attackers of A.

Now we show how NoDefAgainst (and hence the basic explanations from Section 3.2) is related
to our notions of sufficiency and necessity for non-acceptance.

Proposition 4. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be an argument that is not
accepted w.r.t. Sem ∈ {Cmp,Grd,Prf,Sstb}. Then:

• for all E ∈ Sem(AF) such that A /∈ E, NoDefAgainst(A, E) ∈ SuffNot(A);

• NecNot(A) ⊆
⋂
E∈Sem(AF) and A/∈E NoDefAgainst(A, E).

4.3 Necessity, Sufficiency and Minimality

In this paper we have introduced necessity and sufficiency to reduce the size of an explanation.
More common in the literature is to place a minimality condition on the explanation [8, 9]. In
this section we show that our notions of necessity and sufficiency result in explanations that do
not contain more arguments than the minimal explanations from [8]. To this end we introduce,
for �∈ {⊆,≤}:

• MinDefending�(A, E) = {S ∈ Defending(A, E) | @S′ ∈ Defending(A, E) such that S′ � S}
denotes the �-minimal Defending(A, E) sets.8

8In view of the result in [6], these sets correspond to the minimal (� = ≤ and where S ≤ S′ denotes |S| ≤ |S′|)
and compact (� = ⊆) explanations from [8].
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• MinNotDefAgainst�(A, E) = {S ∈ NoDefAgainst(A, E) | there is no S′ ∈ NoDefAgainst(A, E)
such that S′ � S}, denotes the set with all �-minimal NoDefAgainst(A, E) sets.

• MinSuff�(A) = {S ∈ Suff(A) | @S′ ∈ Suff(A) such that S′ � S}, denotes the set of all
�-minimally sufficient sets for the acceptance of A.

• MinSuffNot�(A) = {S ∈ SuffNot(A) | @S′ ∈ SuffNot(A) such that S′ � S}, denotes the set of
all �-minimally SuffNot sets for the non-acceptance of A.

The next example shows that sufficient explanations can be smaller than minimal basic expla-
nations.

Example 11. Let AF2 = 〈Args2,Att2〉, shown in Figure 2. Here we have that Prf(AF2) =
{{A,B}, {C,D}} and that PrfAcc(B) = {A,B}, PrfAcc(D) = {C,D}, PrfNotAcc(B) = {C,D}
and PrfNotAcc(D) = {A,B}. These are the explanations for B and D, whether as defined in Sec-
tion 3.2 or with Defending [resp. NoDefAgainst] replaced by MinDefending [resp. MinNotDefAgainst].

A BC D

Figure 2: Graphical representation of AF2.

When looking at minimally sufficient sets instead, we have that Acc(B) = {A} and NotAcc(D) ∈
{{A}, {B}}. To see that these explanations are still meaningful, note that A defends B against
all of its attackers and as soon as A is accepted under complete semantics, B will be accepted
as well. Thus, the minimally sufficient explanations for B and D are ≤- and ⊆-smaller than the
minimal basic explanations for B and D, but still meaningful.

That minimally sufficient explanations can be smaller than minimal explanations is formalized
in the next propositions.

Proposition 5. Let AF = 〈Args,Att〉 be an AF, let A ∈ Args be accepted w.r.t. Sem ∈ {Adm,
Cmp,Grd,Prf,Sstb} and let �∈ {⊆,≤}. Then:

• for all E ∈ Sem(AF) and all S ∈ MinDefending�(A, E) there is some S′ ∈ MinSuff�(A) such
that S′ � S;

• for all E ∈ Adm(AF) and all S ∈ MinSuff�(A) also S ∈ MinDefending�(A, E);

• for all E ∈ Sem(AF) and all S ∈ MinDefending�(A, E), Nec(A) ⊆ S.

Proposition 6. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be not accepted w.r.t. Sem ∈
{Cmp,Grd,Prf,Sstb}. Then:

• for all E ∈ Sem(AF) and all S ∈ MinNotDefAgainst�(A, E), there is some S′ ∈ MinSuffNot�(A)
such that S′ � S;

• for all E ∈ Sem(AF) and all S ∈ MinNotDefAgainst�(A, E), NecNot(A) ⊆ S.

5 Applying Necessity and Sufficiency

At the Dutch National Police several argumentation-based applications have been implemented [4].
These applications are aimed at assisting the police at working through high volume tasks, leaving
more time for tasks that require human attention. In this section we illustrate how necessity and
sufficiency can be applied in the online trade fraud application from [17].

Consider the following language L3: the complainant delivered (cd), the counterparty delivered
(cpd); the received product seems fake (fake); a package is expected (pex ); the complainant waited
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before filing the complaint (wait); the received packages is indeed fake (recfake); the delivery may
still arrive (deco); it is a case of fraud (f ); and their negations. Based on Dutch Criminal Law
(i.e., Article 326) we can derive the following arguments:

A1 : cpd A2 : ¬cpd A3 : fake A4 : ¬fake A5 : pex A6 : ¬pex

A7 : wait A8 : ¬wait A9 : cd A10 : ¬cd B1 : A1, A3 ⇒ recfake

B2 : A2, A6 ⇒ ¬deco B3 : A2, A5, A7 ⇒ ¬deco B4 : A5, A8 ⇒ deco

C1 : A9, B1 ⇒ f C2 : A2, A9, B2 ⇒ f C3 : A2, A9, B3 ⇒ f

C4 : A9, B4 ⇒ ¬f C5 : A4, A9 ⇒ ¬f C6 : A10 ⇒ ¬f.

The above arguments are only a small subset of the possible arguments in the actual application,
yet this framework already results in 30 preferred and semi-stable extensions. We can therefore
not provide a detailed formal analysis. However, we can already show the usefulness of necessary
and sufficient explanations.

The necessary explanation for the acceptance of f is cd, while for the acceptance of ¬f the
necessary explanation is empty. The reason for this is that, by Article 326, the complainant must
have delivered (e.g., sent the goods or money) before it is a case of fraud but ¬f can be accepted
for a variety of reasons. In the basic explanations it is not possible to derive this explanation, yet
it can be the sole reason for not accepting f . Moreover, minimal sufficient explanations for the
acceptance of ¬f when cd and F = Prem are {cd, pex,¬wait} and {cd,¬fake}, these are both ⊂
and <-smaller than any basic explanation for the acceptance of ¬f , while still providing the main
reasons for the acceptance of ¬f .

Therefore, with necessary and sufficient explanations, we can provide compact explanations
that only contain the core reasons for a conclusion, something which is not possible with the
(minimal) explanations from the basic framework.

6 Conclusion

We have discussed how the explanations from the basic framework introduced in [6] can be adjusted
to account for findings from the social sciences on necessary and sufficient explanations [14, 15, 21].
To this end we have introduced necessary and sufficient sets of arguments for the (non-)acceptance
of an argument and formula and integrated these into the explanations definition. The result is a
meaningful reduction in the size of an explanation, which almost always exists. Moreover, we have
shown that our necessary and sufficient explanations can be smaller than the minimal explanations
from [8] and reduce the explanations to the core reasons of (not) accepting a conclusion in a real-life
application.

To the best of our knowledge this is the first investigation into necessary and sufficient sets
for (non-)acceptance of arguments, especially in the context of integrating findings from the social
sciences (e.g., [12]) into (explanations for) argumentation-based conclusions and into a real-life
application. In future work we plan to investigate how to integrate further findings, such as
contrastiveness and other selection mechanisms.

Acknowledgements. This research has been partly funded by the Dutch Ministry of Justice
and the Dutch National Police.
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A Proofs

Before we turn to the proofs, we introduce some useful notation:

• SemWith(A) = {E ∈ Sem(AF) | A ∈ E} denotes the set of all Sem-extensions that contain
the argument A.

• SemWithout(A) = {E ∈ Sem(AF) | A /∈ E} denotes the set of all Sem-extensions that do not
contain the argument A.

Proposition 1. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. some Sem ∈
{Adm,Cmp,Grd,Prf,Sstb}. Then:

1. For all S ∈ Suff(A), {S,S ∪ {A}} ⊆ Adm(AF);

2. Suff(A) = ∅ iff there is no B ∈ Args such that (B,A) ∈ Att.

3. Nec(A) = ∅ iff there is no B ∈ Args such that (B,A) ∈ Att or
⋂

Suff(A) = ∅.

4. Nec(A) ⊆
⋂

Suff(A).

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. some Sem.

1. Let S ∈ Suff(A). Note that, by definition, S is conflict-free. If there is some B ∈ S such that
(B,A) ∈ Att then there is some C ∈ S that defends against this attack (i.e., (C,B) ∈ Att),
a contradiction. If, there is some B ∈ S such that (A,B) ∈ Att, then A indirectly attacks
itself. Since there is no D ∈ S such that (D,A) ∈ Att it follows that B is not defended
against the attack from A. A contradiction with the definition of S that it defends A against
all attackers. Hence S ∪ {A} is conflict-free.

Now suppose that there is some B ∈ Args and some C ∈ S such that (B,C) ∈ Att. Since C
(in)directly defends A, B indirectly attacks A. By definition of a sufficient set of arguments
S defends A against B. It follows that there is some D ∈ S such that (D,B) ∈ Att. Hence S
defends A and all its own elements against any attacker. Therefore {S,S∪{A}} ⊆ Adm(AF).

2. Suppose that Suff(A) = ∅, then there is no S ⊆ Args such that S is relevant for A and
defends A against all its arguments. Since A is accepted by assumption, it follows that A is
not attacked at all. Now suppose that there is no B ∈ Args such that (B,A) ∈ Att. Then
there is no S ⊆ Args that is relevant for A and hence Suff(A) = ∅.
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3. First suppose that Nec(A) = ∅. Then there is no argument relevant for A (from which it
follows that there is no B ∈ Args such that (B,A) ∈ Att) or there is no B ∈ Args such that
B ∈

⋂
SemWith(A). Note that for each S ∈ Suff(A) there is some E ∈ SemWith(A) such

that S ⊆ E . Since
⋂

SemWith(A) = ∅ it follows that
⋂

Suff(A) = ∅ as well.

For the other direction suppose first that A is not attacked at all, then there is no argument
relevant for A from which it follows that Nec(A) = ∅. Now suppose that Suff(A) = ∅. By
assumption A is accepted and A is attacked, hence Suff(A) 6= ∅. It follows that for each
S ∈ Suff(A) and for each B ∈ S there is an S′ ∈ Suff(A) such that B /∈ S′ and therefore also
an E ∈ Adm(AF) with B /∈ E but A ∈ E . Therefore none of the arguments is necessary:
Nec(A) = ∅.

4. In view of the above two items, suppose that A is attacked by some argument. Let B ∈
Nec(A) and suppose that B /∈

⋂
Suff(A). Then there is some S ∈ Suff(A) such that B /∈ S.

Note that S ∪ {A} ∈ Adm(AF). However, B /∈ S, a contradiction with B ∈ Nec(A).

Proposition 2. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. Sem ∈
{Adm,Cmp,Grd,Prf,Stb}. Then:

• for all E ∈ Sem(AF) such that A ∈ E, Defending(A, E) ∈ Suff(A);

•
⋂
E∈Sem(AF) and A∈E Defending(A, E) = Nec(A).

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be an argument that is accepted w.r.t.
Sem. Consider both items.

• Since A is accepted, there is some E ∈ Sem(AF) such that A ∈ E . Let T = Defending(A, E).
By definition, T is relevant for A (i.e., all B ∈ T (in)directly defend A and since B ∈ E ,
(B,B) /∈ Att). Now suppose that there is some C ∈ Args such that C attacks A and A is
not defended by T. By assumption A ∈ E . Hence there is a D ∈ E such that (D,C) ∈ Att.
But then D (in)directly defends A and therefore D ∈ T. Thus T defends A against all its
attackers and therefore T ∈ Suff(A, ∅).

• Let T =
⋂
E∈SemWith(A) Defending(A, E), since A is accepted, SemWith(A) 6= ∅. Suppose

there is some B ∈ T which is not necessary for the acceptance of A. Then there is an
E ∈ SemWith(A) such that B /∈ E . However, by definition of T, B ∈

⋂
SemWith(A). Hence

T is necessary for A. To see that T contains all the necessary arguments, assume it does
not. Then there is some B ∈ Args such that B /∈ T but B is necessary for the acceptance of
A. However, since B /∈ T, there is some E ∈ SemWith(A) such that B /∈ E , but A ∈ E . A
contradiction.

Proposition 3. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be non-accepted w.r.t. Sem ∈
{Adm,Cmp,Grd,Prf,Sstb}. Then: SuffNot(A) 6= ∅; and NecNot(A) = ∅ implies that there are at
least two direct attackers of A.

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be an argument that is not accepted
w.r.t. Sem ∈ {Adm,Cmp,Grd,Prf,Sstb}.

• Suppose that Suff(A) = ∅. Then there is no S ⊆ Args that is relevant for A and in which
B ∈ Args (in)directly attacks A. It follows that there is no B ∈ Args such that (B,A) ∈ Att.
A contradiction with the assumption that A is non-accepted and that (A,A) /∈ Att.

• It follows that there are B1, . . . , Bn ∈ Args such that (B1, A), . . . , (Bn, A) ∈ Att. Assume
that NecNot(A, ∅) = ∅ but that n = 1. Since by assumption in this section (A,A) /∈ Att, it
follows that A is not attacked in AF↓B1

and should therefore be accepted in any complete
extension. Hence n ≥ 2.

Proposition 4. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be an argument that is not
accepted w.r.t. Sem ∈ {Cmp,Grd,Prf,Sstb}. Then:
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• for all E ∈ Sem(AF) such that A /∈ E, NoDefAgainst(A, E) ∈ SuffNot(A);

• NecNot(A) ⊆
⋂
E∈Sem(AF) and A/∈E NoDefAgainst(A, E).

In order to prove the proposition, we first need the following lemma:9

Lemma 1. Let AF = 〈Args,Att〉, E ∈ Sem(AF) for some Sem ∈ {Adm,Cmp,Grd,Prf,Sstb} and
A ∈ Args. If there is a B ∈ E such that (B,A) ∈ Att, then E ∈ Sem(AF↓A).

Proof. Let AF = 〈Args,Att〉, E ∈ Sem(AF) for some Sem and A,B ∈ Args such that B ∈ E and
(B,A) ∈ Att. Note that E is still admissible in AF↓A since no new attacks are added.

Sem ∈ {Cmp,Prf}. Now suppose there is some C ∈ Args such that C /∈ E but C is defended by
E in AF↓A. If C is not attacked at all in AF↓A, since C /∈ E , (A,C) ∈ Att, but then E defends C in
AF , a contradiction. Hence there is some D ∈ Args such that (D,C) ∈ Att and E defends against
this attack in AF↓A, but then E would defend C in AF as well. Again a contradiction. Hence
E is complete in AF↓A and if E was maximally complete in AF it is still maximally complete in
AF↓A.

Sem = Sstb. Any argument, other than A, attacked by E is still attacked by E in AF↓A. Since
E is still complete, it follows that E is also still semi-stable.

We now turn to the proof of the proposition itself.

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be non-accepted w.r.t. Sem ∈ {Cmp,Grd,
Prf,Sstb}. Consider both items:

• By definition of NoDefAgainst, T = NoDefAgainst(A, E) is relevant for A. We show that there
is a B ∈ T such that (B,A) ∈ Att. Suppose there is no such B, then A is not attacked at
all or E defends A against all its direct attackers and therefore against all its attackers, both
are a contradiction with the completeness of E . Hence there is such a B ∈ T. From which it
follows that NoDefAgainst(A, E) ∈ SuffNot(A).

• Let B ∈ NecNot(A) and suppose that B /∈
⋂
E∈SemWithout(A) NoDefAgainst(A). Then there is

some E ∈ SemWithout(A) such that B /∈ NoDefAgainst(A, E). By assumption, B is relevant
for A and thus (in)directly attacks A. From which it follows that there is some C ∈ E such
that (C,B) ∈ Att. By Lemma 1, E ∈ Sem(AF↓B), a contradiction with the assumption that
B ∈ NecNot(A).

Proposition 5. Let AF = 〈Args,Att〉 be an AF, let A ∈ Args be accepted w.r.t. Sem ∈ {Adm,
Cmp,Grd,Prf,Sstb} and let �∈ {⊆,≤}. Then:

• for all E ∈ Sem(AF) and all S ∈ MinDefending�(A, E) there is some S′ ∈ MinSuff�(A) such
that S′ � S;

• for all E ∈ Adm(AF) and all S ∈ MinSuff�(A) also S ∈ MinDefending�(A, E);

• for all E ∈ Sem(AF) and all S ∈ MinDefending�(A, E), Nec(A) ⊆ S.

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be accepted w.r.t. Sem ∈ {Adm,Cmp,Grd,
Prf,Sstb}:

• Let S ∈ MinDefending�(A, E), then S = Defending(A, E) for some E ∈ SemWith(A). By
Proposition 2 it follows that S ∈ Suff(A). Hence there is some S′ ∈ MinSuff�(A) such that
S′ � S, for any of the considered semantics.

9For Sem = Grd this lemma was shown in [5].
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• Let Sem = Adm and S ∈ MinSuff�(A). By Proposition 1, S ∪ {A} ∈ Adm(AF) and by
definition of a sufficient set of arguments, S defends A against all its attackers. There-
fore Defending(A,S ∪ {A}) = S. Suppose that S ∪ {A} is such that Defending(A,S ∪
{A}) /∈

⋃
E∈Adm(AF) MinDefending�(A, E). Then there is some E ∈ AdmWith(A) such that

Defending(A, E) ≺ Defending(A,S ∪ {A}). By Proposition 2, Defending(A, E) ∈ Suff(A). A
contradiction since S ∈ MinSuff�(A) and Defending(A, E) ≺ S.

• This follows immediately from the second item in Proposition 2.

Proposition 6. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be not accepted w.r.t. Sem ∈
{Cmp,Grd,Prf,Sstb}. Then:

• for all E ∈ Sem(AF) and all S ∈ MinNotDefAgainst�(A, E), there is some S′ ∈ MinSuffNot�(A)
such that S′ � S;

• for all E ∈ Sem(AF) and all S ∈ MinNotDefAgainst�(A, E), NecNot(A) ⊆ S.

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be non-accepted w.r.t. Sem ∈ {Cmp,Grd,
Prf,Sstb}:

• Let S ∈ MinNotDefAgainst�(A, E) for some E ∈ SemWithout(A). Note that we have S =
NoDefAgainst(A, E). Hence, by Proposition 4 it follows that S ∈ SuffNot(A). Hence, there is
some S′ ∈ MinSuffNot�(A) such that S′ � S, for any of the considered semantics.

• This follows from the second item in Proposition 4.
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