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Abstract
In this paper, we present a learning-based ap-
proach to determining acceptance of arguments un-
der several abstract argumentation semantics. More
specifically, we propose an argumentation graph
neural network (AGNN) that learns a message-
passing algorithm to predict the likelihood of an
argument being accepted. The experimental re-
sults demonstrate that the AGNN can almost per-
fectly predict the acceptability under different se-
mantics and scales well for larger argumentation
frameworks. Furthermore, analysing the behaviour
of the message-passing algorithm shows that the
AGNN learns to adhere to basic principles of ar-
gument semantics as identified in the literature,
and can thus be trained to predict extensions under
the different semantics – we show how the latter
can be done for multi-extension semantics by us-
ing AGNNs to guide a basic search. We publish
our code at https://github.com/DennisCraandijk/
DL-Abstract-Argumentation.

1 Introduction
Over the past few years an increasing amount of research ef-
fort has been directed towards designing deep learning mod-
els that learn on problems from symbolic domains [d’Avila
Garcez et al., 2015]. Recent progress has sparked interest in
graph neural networks (GNNs), a class of neural networks ca-
pable of performing computations over graphs. Due to their
strong relational inductive bias [Battaglia et al., 2018], GNNs
can be trained to solve constraint satisfaction problems which
require performing relational inferences such as boolean sat-
isfiability [Selsam et al., 2019] and solving Sudoku puzzles
[Palm et al., 2018].

One domain in symbolic AI that is relatively unexplored
with respect to GNNs is computational argumentation, an
approach to defeasible reasoning that focuses on interactions
between arguments and counterarguments. With applications
in multi-agent systems, decision-making tools, medical and
legal-reasoning, argumentation has become a major subfield
of AI [Atkinson et al., 2017]. Much of the theory in com-
putational argumentation is built on Dung’s [1995] pioneer-
ing work on abstract argumentation frameworks, which in-

troduced several acceptability semantics that define which
sets of arguments (extensions) can be reasonably accepted
given an argumentation framework (AF) of arguments and at-
tacks between these arguments, often represented as a graph.
Thus, it can be determined if an argument can be accepted
given an AF by looking at whether it is contained in some
extensions (credulous acceptance) or all extensions (scepti-
cal acceptance) under a given semantics. Due to the com-
putational complexity of determining which arguments can
be accepted, the design of efficient methods for computing
extensions and acceptability constitutes an active research
direction within the argumentation community. Most cur-
rent approaches solve acceptance problems by translating
the problem to a symbolic formalism for which a dedicated
solver exists, such as constraint-satisfaction problems, propo-
sitional logic or answer-set programming [Gaggl et al., 2020;
Charwat et al., 2015].

In this paper, we propose an argumentation graph neural
network (AGNN) that learns to predict credulous and scepti-
cal acceptance of arguments under 4 well-known argumenta-
tion semantics. To the best of our knowledge, only Kulhman
and Thimm [2019] have conducted a preliminary study us-
ing GNNs, implementing a conventional single forward pass
classifier to approximate credulous acceptance under the pre-
ferred semantics with an average class accuracy of around
0.61. We propose a recurrent GNN that can almost perfectly
predict (MCC between 0.997 and 1) both credulous and scep-
tical acceptance under several semantics by learning to per-
form a sequence of relational inferences based on the attack
relations between the arguments in an AF. Furthermore, we
also provide a way to predict (multiple) extensions given an
AF by using AGNN to guide a search procedure.

Our learning-based approach to determining argument ac-
ceptance shows that sub-symbolic deep learning techniques
can accurately solve a problem that could previously only
be solved by sophisticated symbolic solvers. By inspecting
the behaviour of the message-passing algorithm of AGNN,
we see that it has learnt some basic principles of argumenta-
tion semantics [Baroni et al., 2011], and in the case of accep-
tance under the grounded semantics exhibits behaviour simi-
lar to a well-established symbolic labelling algorithm for the
grounded extension [Modgil and Caminada, 2009]. AGNN
is a single architecture that is able to approximate argumen-
tation problems of differing complexity and of sizes sub-
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Figure 1: Graph representations of the AF Fe.

stantially larger than what it saw during training in constant
time, simply by running for more iterations. While symbolic
solvers always provide the correct answer, different problems
under different semantics each need their own tailor-made al-
gorithm, and the time complexity depends on the complexity
of the problem.

2 Preliminaries
We recall Dung’s abstract argumentation frameworks [1995].

Definition 1. An abstract argumentation framework (AF) is
a pair F = (A,R) where A is a (finite) set of arguments and
R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. A set S ⊆ A attacks b if there is an a ∈ S,
such that (a, b) ∈ R. An argument a ∈ A is defended by
S ⊆ A iff, for each b ∈ A such that (b, a) ∈ R, S attacks b.

Example 1. Figure 1 (a) illustrates the AF Fe = ({a, b, c, d},
{(a, b), (b, c), (b, d), (c, d), (d, c)}), which serves as a run-
ning example.

Dung-style semantics define the sets of arguments that can
jointly be accepted (extensions). A σ-extension refers to an
extension under semantics σ. We consider admissible sets
and preferred, complete, grounded and stable semantics with
the following functions respectively adm, prf, com, grd, stb.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is
conflict-free (in F), if there are no a, b ∈ S, such that (a, b) ∈
R. The collection of sets which are conflict-free is denoted by
cf(F ). For S ∈ cf(F ), it holds that:

• S ∈ adm(F ), if each a ∈ S is defended by S;

• S ∈ prf(F ), if S ∈ adm(F ) and for each T ∈ adm(F ),
S 6⊂ T ;

• S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A
defended by S it holds that a ∈ S;

• S ∈ grd(F ), if S ∈ com(F ) and for each T ∈ com(F ),
T 6⊂ S;

• S ∈ stb(F ), if for each a ∈ A \ S, S attacks a.

Example 2. The extensions of Fe under the preferred,
complete and grounded semantics are: prf(F ) =
{{a, c}, {a, d}}; com(F ) = {{a}, {a, c}, {a, d}};grd(F ) =
{a}; stb(F ) = {{a, c}, {a, d}}.

Typical problems of interest for abstract argumentation se-
mantics are as follows.

Definition 3. Given an AF F = (A,R), a semantics σ and
some argument a ∈ A:

• Enumeration Enumσ: construct all extensions pre-
scribed by σ

• Credulous acceptance Credσ: decide if a is contained in
at least one σ-extension

• Sceptical acceptance Sceptσ: decide if a is contained in
all σ-extensions

Example 3. Under the preferred semantics, only argument a
is sceptically accepted and arguments a, c and d are credu-
lously accepted in Fe.

The problem of deciding the acceptability of arguments
is well-studied [Dunne and Wooldridge, 2009]. Whereas
Credgrd, Sceptgrd and Sceptcom can be solved in polynomial
time, all other problems considered here are shown to be to
NP-complete or surpassing.

3 Problem Setup
In order to solve argument acceptability problems with a
GNN we pose them as a classification problem. Consider an
AF F = (A,R) and a semantics σ. Our goal is to approxi-
mate a function fσ mapping the input F to a binary labelling
fσ(F ) denoting the acceptability of all arguments in A under
semantics σ. The function is approximated by producing a
value for each argument in the interval [0, 1] - representing
the likelihood whether an argument can be accepted - which
is rounded to produce a binary answer (accept or reject).

4 Model
We introduce our argumentation graph neural network
(AGNN) model. An AGNN maps an AF to a graph repre-
sentation and assigns a multidimensional embedding to each
node. These embeddings are then iteratively updated by per-
forming a number of message passing steps. At each iteration
nodes broadcast their embeddings by exchanging messages
with their neighbours and subsequently update their embed-
ding based on the incoming messages. After each iteration
those embeddings can be read out to produce the predicted
likelihood of the respective argument being accepted.

More formally, G is an AF graph representation in which
arguments are nodes and attacks are directed edges. Each
node i is assigned an embedding, denoted by vti at step t. The
node embedding is initialised by a learned embedding xi such
that v0i = xi. Each message passing iteration the embeddings
are updated according to:

mt+1
i =

∑
j∈Ns(i)

Ms(vti , v
t
j)+∑

k∈Nt(i)

M t(vti , v
t
k)

(1)

(vt+1
i , ht+1

i ) =U(hti,m
t+1
i , xi) (2)

where Ns(i) and N t(i) denote all nodes which have a
connection with node i and for which i is the source or tar-
get node respectively. The message functions Ms and M t

are Multilayer perceptrons (MLPs) which learn to compute a
message to send along edges based on the embeddings of the



Characteristic grd prf stb com

Extensions per AF 1.0 2.1 1.6 6.3
Arguments per extension 4.7 9.5 11.8 8.0
Scept. accepted arguments per AF 4.8 5.9 5.8 4.8
Cred. accepted arguments per AF 4.8 8.0 7.9 8.0

Table 1: AF characteristics averaged over all AFs the test dataset.

nodes it connects. Ms computes a message from the source
node to the target node andM t vice versa. Messages from all
neighbours are subsequently summed to form the incoming
message mt

i. Aggregating messages into a single incoming
message allows the model to handle graphs of arbitrary size.
For nodes which do not have any incoming edges mt

i is filled
with zeros. The update function U is a Recurrent Neural Net-
work (RNN) which learns how to update a node given the
incoming message and the node’s input feature, where hti is
the RNNs hidden state. By updating the node embeddings re-
currently while also accounting for the input features, AGNN
is able to iteratively refine embeddings without forgetting any
potentially relevant information.

After each iteration the embeddings can be read out with
the readout function R. R is an MLP that learns to map a
node’s embedding vti to a logit probability otvi = R(vti) rep-
resenting the likelihood of the respective argument being ac-
cepted. This logit probability can subsequently be converted
to a likelihood in the interval [0, 1] using a sigmoid function.

The message and update functions form the core of the
AGNN model. Together, the functions yield a neural mes-
sage passing algorithm whose parameters can be optimised.
The readout function serves as a mapping between the mul-
tidimensional embeddings and the output values. In terms
of argumentation AGNN learns how to initialise arguments
with an embedding; recurrently update these embeddings by
exchanging messages between arguments over the attack re-
lations; and map the argument embeddings to a likelihood of
that argument being accepted.

5 Experimental Setup

5.1 Data

We generate a variety of challenging argumentation frame-
works by sampling from the following AF generators from
the International Competition on Computational Models of
Argumentation [Gaggl et al., 2020]: AFBenchGen2, AFGen
Benchmark Generator, GroundedGenerator, SccGenerator,
StableGenerator. To avoid duplicates, each AF is checked
for isomorphism with Nauty [McKay and Piperno, 2014].
Ground-truth labels are determined based on extensions ob-
tained with the sound and complete µ-toksia solver [Niskanen
and Järvisalo, 2019]. We generate a test and validation dataset
of size 1000 with AFs containing |A| = 25 arguments, and a
training dataset of a million AFs where the number of argu-
ments per AF is sampled randomly between 5 ≤ |A| ≤ 25
(to accelerate the learning). Table 1 shows characteristics of
the AFs in the test dataset under different semantics.

Sceptσ Credσ

Metric Model grd prf stb com grd prf stb com

GCN 0.17 0.18 0.20 0.16 0.17 0.17 0.39 0.36
MCC FM2 0.64 0.54 0.55 0.64 0.63 0.57 0.55 0.57

AGNN 1.00 0.997 0.997 1.00 1.00 0.998 0.998 0.999

MAE AGNN 3e−8 5e−4 9e−4 3e−8 3e−8 6e−4 4e−4 3e−4

Table 2: Argument acceptance results on the test dataset.

5.2 Training
We instantiate the AGNN model with one hidden layer and a
rectified linear unit for non-linearity for the MLPs Ms, M t

and R, a Long Short-Term Memory [Hochreiter and Schmid-
huber, 1997] for U and a shared random embedding xi for
all nodes. The dimensions of the embedding and all hidden
neural layers are d = 128. The model is run for T = 32 mes-
sage passing steps. We train our model in batches containing
50 graphs (approximately 750 nodes) using the AdamW op-
timiser [Loshchilov and Hutter, 2019] with a cosine cyclical
learning rate [Smith, 2017] between 2e−4 and 1e−7, `2 regu-
larisation of 1e−9 and clip the gradients by global norm with
a 0.5 clipping ratio [Pascanu et al., 2013]. We train the model
by minimising the binary cross entropy loss between the pre-
dicted likelihood and the ground-truth binary label. We min-
imise the loss at every message passing step (rather than only
on the final step) since this encourages the model to learn a
convergent message passing algorithm while also mitigating
the vanishing gradient problem [Palm et al., 2018].

6 Results
We train AGGN on the AFs in the training dataset for each ac-
ceptance problem and semantics described in Section 2. We
use the Matthews Correlation Coefficient (MCC) to evaluate
the binary classification performance on the AFs in the test
dataset. Since accepted and rejected arguments are equally
important but unequally distributed in the dataset (see Ta-
ble 1), MCC provides a more balanced metric compared to
accuracy or the F1-score [Powers, 2011]. We compare our
approach to a graph convolutional network (GCN) [Kipf and
Welling, 2017] baseline and our own implementation of the
FM2 model of Kuhlmann and Thimm [2019]. Both are single
forward pass classifiers, where FM2 is a GCN with the num-
ber of incoming and outgoing attacks per argument added as
input features. Table 2 reports the MCC scores for all mod-
els. AGNN performs considerably better than GCN or FM2,
and achieves a perfect score on all problems which belong to
complexity class P. On all other problems (belonging to NP or
surpassing) AGNN is able to correctly predict the acceptance
of arguments almost perfectly.

In addition to the classification performance of the model,
we are interested in the confidence of its predictions. As a
measure of prediction confidence we use the mean absolute
error (MAE) between the predicted likelihoods and the binary
ground-truth labels. An MAE of 0.01 implies that on average
the predicted likelihood deviates 1 percentage point from the
ground-truth label. A low MAE thus indicates predictions are
made correctly and with high confidence. Table 2 shows that
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Figure 2: MCC score for Credprf on AFs of different size as a func-
tion of the number of message passing steps T . The performance for
the first few message passing steps mainly reflects how well AGNN
is able to anticipate the status of arguments before convergence. Be-
cause AFs are randomly generated the performance during this an-
ticipation phase may vary between datasets, hence the crossing lines
for |A| = 100 and |A| = 200.

predictions are overall made with high confidence. Most no-
tably AGNN predictions deviate only 3e−6 percentage points
from the true label on all problems for which it achieved a
perfect classification score.

6.1 Scaling
Even though AGNN is trained on AFs of size 5 ≤ |A| ≤ 25,
it is able to determine acceptability in much larger AFs. In
order to test how well the trained model scales to larger
instances we generate extra test datasets for each |A| ∈
{50, 100, 200}with 1000 AFs containing |A| arguments. Fig-
ure 2 illustrates the MCC scores for predicting the credulous
acceptance under the preferred semantics on different sized
AFs as a function of the number of message passing steps T .
The figure shows AGNN continues to improve its predictions
on large AFs by running for more iterations. Notably the per-
formance on |A| = 200 AFs still improves after hundreds
of iterations (which is not surprising considering that those
AFs on average contain 5e3 attacks and up to 9e5 extensions).
This indicates that, while only being trained to perform 32
message passing steps, AGNN has learned some general and
convergent message passing procedure which scales to larger
AFs by performing more iterations.

AGNN exhibits similar behaviour on all problems of the
same complexity as Credprf. On all problems belonging to
complexity class P, AGNN is able to correctly classify all ar-
guments in AFs with |A| = 200 when run for 32 message
passing iterations.

7 Analysing AGNN Behaviour
The AGNN model learns a message passing algorithm which
enables it to predict the acceptance status of arguments in
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Figure 3: The acceptance predictions AGNN makes after
the first three message passing iterations on the AF F =
({a, b, c, d}, {(a, b), (a, c), (b, c), (b, d), (c, b), (d, c)} with respect
to the grounded semantics. The label and colour of each arguments
denote whether the argument is predicted to be A accepted or R re-
jected where a darker colour indicates a higher confidence predic-
tion. At t = 1 argument a converges to accept while the other ar-
guments anticipate reject with a confidence that positively correlates
with the amount of incoming attacks. At t = 2 arguments b and c
converge to reject while d adjusts its anticipation to accept since all
its neighbours anticipated reject. At t = 3 d converges to accept
after which the model stops evolving.

an AF. The process of iteratively updating arguments by
exchanging messages can be understood as performing a
sequence of relational inferences between connected argu-
ments. Since the computations underlying those inferences
are learned by neural networks, it is hard to interpret ‘how’
those inferences enable the model to predict acceptance.

We inspect the outputs of each iteration in order to infer
how the model works towards a solution. AGNN exhibits
similar behaviour on all AFs in the test dataset. Arguments
are initialised with a low confidence prediction. At each it-
eration the likelihoods change based on the incoming mes-
sages, until arguments ‘decide’ on their status by converging
to a high confidence likelihood close to 0 or 1. Generally,
the convergence of an argument directly affects the predic-
tion of adjacent arguments in the next iteration. As infor-
mation is exchanged between arguments, convergence prop-
agates through the graph until the model stops evolving and
the likelihoods stay more or less constant.

To gain a better understanding of this behaviour we focus
on acceptance under the grounded semantics. As shown in
Table 2 AGNN is able to correctly predict the acceptance of
all arguments with extremely high confidence. We inspect
how arguments in an AF converge over consecutive iterations
(as shown in Figure 3) and observe three consistent patterns:

1. unattacked arguments converge to accept;

2. any argument attacked by an argument which is con-
verged to accept, converges to reject;

3. any argument which is only attacked by arguments
which are converged to reject, converges to accept.

Any argument which is not affected by these procedures
converges to reject over the course of multiple iterations. In-
terestingly, each procedural pattern seems to encode some
principle of the grounded semantics. Pattern 1 corresponds
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Figure 4: The search tree for enumerating the preferred extensions of
the AF Fe. Each tree node illustrates a set S in the top half and the
set of arguments which are constructively accepted w.r.t. S in the
bottom half. At each step down the tree a constructively accepted
argument is included in S until S becomes an extension (i.e. no
constructively accepted argument can extend S any further).

to the notion that the defence of arguments included in the
grounded extension is ‘rooted’ in unattacked arguments [Ba-
roni et al., 2011]; pattern 2 corresponds with the principle of
conflict-freeness; and pattern 3 corresponds with the princi-
ple of defence. Since AGNN exhibits these patterns with ex-
tremely high confidence predictions (MAE of 7e−7) on every
AF, it seems the model has learned to encode these principles
as procedural rules into its message passing algorithm. The
procedural rules also correspond with those used in a well-
established symbolic labelling algorithm which can be used
to find the grounded extension [Modgil and Caminada, 2009].
This algorithm applies the same principles as described in the
three observed patterns. It seems AGNN has learned to en-
code the principles of the grounded semantics and applies
these as procedural rules to determine which arguments are
contained in the grounded extension.

We also observe that AGNN tries to anticipate the accep-
tance status of arguments in an opportunistic fashion. Argu-
ments which have not yet converged try to anticipate their
status based on information about their neighbourhood. At
the first message passing step, only unattacked have enough
information to converge. For all other arguments we observe
a negative correlation between the degree of incoming attacks
and the predicted likelihood of being accepted. Statistically
seen, the more incoming attacks an argument has, the higher
the chance that it is not defended against one of those at-
tacks1. It seems that AGNN has learned to infer the amount
of incoming attacks from the incoming message and uses this
information to anticipate the predicted likelihoods. Addition-
ally, anticipating arguments affect unconverged neighbour-
ing arguments according to the same procedure as mentioned
above. An argument attacked by arguments which anticipate
reject will for instance anticipate accept or lower its confi-
dence in anticipating reject.

1This encodes the ideas behind ranking-based semantics, in
which the numbers of attackers and defenders are used to rank ar-
guments [Bonzon et al., 2016].

8 Enumerating Extensions
Motivated by AGNN’s ability to predict argument acceptance
almost perfectly we expand our scope to the extension enu-
meration problem. In Section 7 we showed that AGNN is
able to predict the acceptance of arguments under grounded
semantics by learning a procedure to enumerate the grounded
extension. Since an AF always has one grounded exten-
sion, there is a one-to-one mapping between enumerating the
extension and deciding acceptance. It seems plausible that
AGNN is able to learn a similar procedure under the pre-
ferred, stable and complete semantics. However, under these
semantics an argument can be contained in multiple exten-
sions and as AGNN can only output a single value per argu-
ment there is no straightforward way to directly use AGNN
to enumerate all extensions.

To facilitate enumeration under multi-extension semantics
we pose enumeration as a search problem and use AGNN to
guide a basic search. Starting from an empty set of argu-
ments S we construct a search tree by incrementally adding
arguments to S that extend S into becoming an extension.
When no argument argument can extend S any further we
backtrack, select a new argument to extend S and continue
the search. Finding extensions with this procedure requires
iteratively solving which arguments can extend S into becom-
ing an extension and verifying when S becomes an extension.
To address these problems with AGNN we propose the con-
structive acceptance task Constrσ .

Definition 4. Given an AF F = (A,R), a semantics σ, a set
of arguments S ⊆ A and an argument a ∈ A, a is said to be
constructively accepted w.r.t. S if S ∪ {a} ⊆

⋃
E∈σ(F ) E

An argument can only be constructively accepted w.r.t. a
set which is subset equal to an extension. Given such a set
S, an argument a is constructively accepted if it is either con-
tained in S or if adding a to S yields a larger set which is also
subset equal to an extension.

Example 4. Given the set of arguments S = {a} in Fe, ar-
guments a, c and d are constructively accepted w.r.t. S un-
der preferred, complete and stable semantics while only argu-
ment a is constructively accepted under grounded semantics.

Consider AF F = (A,R) and semantics σ. Starting from
the empty set S we extend S into an extension by recursively
computing which arguments are constructively accepted w.r.t.
S and adding one of these arguments to S. We use AGNN to
approximate the function fσ mapping F and S to a binary
labelling fσ(F, S) indicating for each argument in A if it is
constructively accepted w.r.t. S. We inform AGNN which
arguments are currently in S by initialising the correspond-
ing nodes with a separate embedding xi and we round the
computed likelihoods for each argument to a binary answer.

Each time a constructively accepted argument is added, S
is extended into a larger subset of an extension until at some
point it becomes equal to an extension. Verifying when S
becomes equal to an extension is straightforward under the
grounded, preferred and stable semantics. Under these se-
mantics no extension can be a subset of another extension.
Therefore S is an extension when all constructively accepted
arguments are included in S and no argument can extend



Enumσ

Metric grd prf stb com

Precision 1.00 0.999 1.00 1.00
Recall 1.00 0.998 0.999 0.41

Table 3: Extension enumeration results on the test dataset.

it any further. Those extensions are thus found in the leaf
nodes of the search tree (as shown in Figure 4). Under the
complete semantics this principle does not hold for all ex-
tensions. Since a complete extension can also be a subset of
another complete extension, exhaustively extending S until it
becomes an extension will find some, but not all extensions.

Since AGNN provides an approximation, somewhere in
the tree search an argument amight falsely be labelled as con-
structively accepted w.r.t. S, yielding the illegal set S ∪ {a}.
An illegal set is not subset equal to any extension and there-
fore cannot be extended into a extension. Due to the branch-
ing nature of a tree search, a single mislabelled argument
early in the search procedure may spawn many illegal sets
thereby increasing the risk of an incorrectly enumerated ex-
tension. To mitigate this risk while constructing the search
tree we stop extending any set S when AGNN’s output in-
dicates that S contains a constructively rejected argument
(since as long as S is subset equal to an extension all argu-
ment in S should be constructively accepted by Definition 4).

8.1 Experimental Setup and Results
We alter the training dataset described in Section 5.1 to su-
pervise AGNN in learning to predict which arguments are
constructively accepted w.r.t. a set of arguments. For each
AF we generate a set of arguments S which is subset equal
to a randomly selected extension to serve as input feature.
The ground-truth labels are determined by taking the union
of all extensions which contain S and label each argument
as accepted. To train AGNN in recognising illegal sets we
also generate a set of arguments which is not subset equal
to any extension and set the ground-truth label of each argu-
ment to reject. We train AGNN with the same parameters as
described in Section 5.2.

For each AF in the test dataset we use AGNN to construct
a search tree and return the sets found in the leaf nodes. Ta-
ble 3 shows AGNN is able to enumerate extensions almost
perfectly under most semantics. As anticipated the recall un-
der the complete semantics is relatively low since the search
procedure cannot find extensions which are a subset of an-
other extension. However when we include a verification al-
gorithm [Besnard and Doutre, 2004] to enable the identifica-
tion of such extensions, the recall increases to 0.91. This indi-
cates AGNN has indeed learned the principles of constructing
complete extensions but many are not identified as such due
to the nature of the search procedure.

9 Discussion
9.1 Related Work
Existing research on (deep) learning based approaches to ar-
gumentation focus mainly on argument mining – that is, ex-

tracting arguments or attacks from natural language text [Co-
carascu and Toni, 2017] – instead of solving acceptability
problems. The exception is recent work by Kuhlmann and
Thimm [2019], who carried out a feasibility study on the use
of a graph convolutional neural network to approximate the
credulous acceptance of arguments under the preferred ex-
tension. The proposed FM2 model operates as a conventional
single forward pass classifier where the number of incoming
and outgoing attacks is added to each argument as input fea-
tures. Thus, FM2 learns to find a correlation between the
input features of an argument’s neighbourhood and the likeli-
hood of being accepted. In contrast, AGNN learns to perform
a sequence of relational inferences which enable it to approx-
imate the acceptance of an argument solely based on the at-
tack structure of an AF. This more general approach greatly
outperforms FM2’s local focus (see Table 2).

From a machine learning perspective our model is close to
Palm et al. [2018] and Gilmer et al. [2017]. Both describe
GNNs that learn neural message passing algorithms on prob-
lems from symbolic domains. Our model differs since we em-
ploy two message functions in order to distinguish between
messages sent from attack source to target or vice versa. In
addition we show how GNNs can be used to guide a basic
search on problems for which multiple solutions exist.

9.2 Conclusion and Future Work

We have presented a learning-based approach to determin-
ing acceptance of arguments under abstract argumentation se-
mantics, proposing AGNN, which learns a message-passing
algorithm to predict the likelihood of an argument being ac-
cepted. AGNN can almost perfectly predict the acceptabil-
ity under different semantics and scales well for larger argu-
mentation frameworks. Furthermore, AGNN can also enu-
merate all extensions under different semantics very well -
for multi-extension semantics, AGNN is used to extend a set
of arguments such that it becomes an extension. Analysis
of AGNN’s behaviour shows that it learns to adhere to basic
principles of (ranked) argument semantics as identified in the
literature [Baroni et al., 2011; Bonzon et al., 2016], and be-
haves similarly to a well-known symbolic labelling algorithm
for grounded semantics [Modgil and Caminada, 2009].

Although AGNN does not provide the same theoretical
guarantees as a symbolic algorithm, the appeal of a learning-
based approach is that it generalises to different problems
without needing the expert knowledge of human algorithm
designers [Li et al., 2018]. AGNN is a single architecture
that can solve different argumentation problems (Cred, Scept,
Constr) for different semantics (grd, prf, stb, com) and on
AFs larger than seen during training in constant time, simply
by running for more iterations. Additionally, by solving the
constructive acceptance problem, AGNN can guide a basic
tree search enumerating extensions with a polynomial delay.

For future work, we aim to look at employing AGNN for
dynamic argumentation [Doutre and Mailly, 2018], looking
at whether AGNN can learn, for example, which arguments
or attacks should be added or removed to enforce a certain
argument’s acceptability.
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