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Abstract. This paper presents a formalisation of two typical legal dialogue moves in a
formal dialogue game for argumentation. The moves concern two ways of reinterpret-
ing a general rule used in an argument, viz. by ‘unpacking’ and ‘refining’ the rule. The
moves can be made not only by the user but also by the attacker of the rule, in order to
reveal new ways to attack it. The new dialogue game is illustrated with examples from
legal evidential reasoning, in which these types of moves are particularly common.

1 Introduction

Generalisations play a key role in reasoning about evidence [17, 18, 16]. Fact finders and
triers of fact mostly leave them implicit in their arguments and decisions, but they are neces-
sary to explain why certain evidence supports a certain conclusion. They are also dangerous,
however, since their quality is often dubious. Therefore, any model of rational evidential
reasoning should allow for the building of arguments with generalisations but also for their
critical testing. Such testing both has inferential and dialogical aspects.

As for inference with generalisations, we have argued in [15, 5] that this can be modelled
as defeasible argumentation, so that part of the critical testing can be modelled as the con-
struction and comparison of arguments and counterarguments. However, our previous work
did not address the dynamic aspects of the critical testing process. As argued by e.g. [18],
in evidential reasoning generalisations (which they call “anchors”) should be reshaped in a
critical inquiry. The aim of this paper, which is based on [4], therefore is to embed defeasible
inference with generalisations in a dialogue game where such reshaping can take place.

Dialogue games for argumentation are not new in Al & Law [8, 10, 3, 14]. The present
contribution is to add some new dialogue moves that are typical in legal dialogues with un-
written rules, such as commonsense generalisations. From the examples of [18] two patterns
emerge in particular: ‘unpacking’ and ‘refining’. Unpacking is when a single generalisation
is replaced by a chain of generalisations with the same start and end point as the original one.
For instance, [16], the generalisation “if a witness testifies that P is the case then usually P
is the case” could be unpacked into “if a witness testifies that he observed P then usually
he believes that he observed P”, “if a witness believes that he observed P then usually his
senses gave evidence of P and “if a witness’ senses gave evidence of P then usually P is
the case”. Refining is when a generalisation is given an extra condition. For example [18],
“two witnesses who agree usually tell the truth” can be argued to have an extra condition that
the witnesses did not confer. By making this explicit with “two witnesses who agree and did
not confer usually tell the truth”, the extra condition becomes open for challenge. Note that
refining a generalisation is not the same as arguing for an exception to it. When refining a



generalisation of one’s opponent, one tries to achieve that the opponent must prove an addi-
tional condition before the generalisation can be applied. By arguing for an exception to a
generalisation one instead tries to prevent its application by proving that an exception holds.

Unpacking and refining are not matters of inference but of dialogue. They reinterpret an
argument moved in a dialogue and thus they crucially differ from current dialogue models,
where an argument can only be modified by ‘backwards’ extending it with an argument for
one of its premises. Another difference with current models is that these two moves can be
made not only by the user but also by the attacker of the argument, who may thus reveal addi-
tional attacking points (for instance, if the attacker has evidence that the witnesses conferred).

In this paper we want to show how these two dialogue moves about generalisations can
be added to dialogue models of legal reasoning. A secondary aim is to propose a new way of
formulating dialogue games for argumentation, which is arguably better suited for evidential
reasoning (as will be explained in Section 3). We do not intend to model an actual legal
procedure but a rational theory of how two antagonists can debate the tenability of a claim.

[12] have previously formalised similar reasoning phenomena in the context of reasoning
with and about case rationales; see also [2] for informal discussions of relevant examples.
We draw inspiration from this work but also add to it, since [12] only focus on how moves
like unpacking change the set of arguments of a dispute; they do not embed such moves in
a model with other speech acts. Also, of the two moves that we are interested in, they only
model ‘unpacking’ (although they model four other moves about case rationales).

The rest of this paper is organised as follows. In Section 2 we present two informal exam-
ples of dialogues with unpacking and refinement moves, after which in Section 3 we discuss
some formal preliminaries about logic and dialogue systems. In Section 4 we present our
formal dialogue game and we apply it in Section 5 to the example dialogues of Section 2.

2 Motivating examples

In this section we give two example dialogues that involve unpacking and refinement of
generalisations, both taken from [18] (the generalisations involved are displayed in boldface).
The dialogues are not intended to be complete; other ways of explaining or attacking the
generalisations may be possible.

The first example concerns the Rijkbloem case, in which Danny Rijkbloem was prose-
cuted for shooting the father of his girlfriend, Nicole. The only other possible suspect was
Nicole’s mother, who was also present at the shooting. However, she was not prosecuted.

prosecution: Rijkbloem shot the father, because mother and daughter testified that Rijkbloem
shot the father, and we all know that if two people testify that something is true then it is true.
(making a claim and providing reasons for that claim)

If witness A testifies that ¢ and if witness B testifies that , then ¢ is true

defense: Your argument is based on the generalisation “if two people testify that something
is true then it is true”. This only holds if the two witnesses do not profit from lying.(exposing
a possible ““hidden condition” of the generalisation)

If witness A testifies that ¢ and if witness B testifies that ¢ and the witnesses do not profit from lying, then
@ istrue

defense: What makes you think that the mother and daughter in this case do not profit from
lying? (disputing the newly exposed premise)

prosecution: | see your problem. Nevertheless, if two witnesses profit from lying but made
their statements separately then usually they still speak the truth (because two people rarely



tell exactly the same lie) (refining the original generalisation in an alternative way).
If witness A testifies that ¢ and if witness B testifies that ¢ and the witnesses profit from lying and the
witnesses made their statements separately, then ¢ is true

The second example concerns the Caroll case, involving an IRA attack on Australian
tourists in Roermond, The Netherlands in 1990. A witness had seen a car speeding past with
two people in it near the crime. This happened at dusk, so the witness may not have been
able to produce a reliable identification of the persons he saw in the car. However, the witness
later saw one of the suspects, a mr. Carroll, on the news and in the newspaper. So when the
witness was called to testify whether he saw Carroll, he had already seen Carroll in his role
as the suspect after the crime and this arguably influenced his positive identification.

prosecution: The witness saw Carroll at the crime, because the witness remembers he saw
Carroll at the time of the crime and if a person remembers something then it is true (making
a claim and providing reasons for that claim)

If witness A remembers that o, then ¢ is true

defense: You say that “if a person remembers something then it is true”. What you actually
mean is that if a witness remembers something, then at the time of the crime the witness
believed that it is true, and that if the witness believed something at the time of the crime,
then it was true at that time. (unpacking the original generalisation)

If witness A remembers that ¢, then at the time of the crime the witness believed ¢, if at the time of the
crime the witness believed ¢, then ¢ is true

defense: In my opinion, your witness did not at the time of the crime believe he saw Carroll. |
say this because | heard that the witness did not have a good look at the person near the crime.
Furthermore, your witness saw Carroll on TV after the crime, and this may have influenced
his memories. (providing a counterargument to the unpacked generalisation)

3 Formal preliminaries
3.1 Dialogue games for argumentation

Dialogue games formulate principles for coherent dialogue, and coherence depends on the
goal of a dialogue. The goal of argumentation dialogues is fair and effective resolution of
a conflict of opinion. Formal dialogue games have a topic language L, with a logic £, and
a communication language L. with a protocol P. Dialogue games also have commitment
rules, which specify the effects of an utterance from L. on the propositional commitments
of the dialogue participants. For instance, claiming or conceding  commits the speaker to ¢
and a retracting ¢ removes ¢ from the speaker’s commitments. Commitments can be used to
constrain the allowed moves, for example, to disallow moves that make the speaker’s commit-
ments inconsistent. They can also be used to define termination and outcome of a dialogue. In
the dialogues we are concerned with here a proponent and an opponent argue about a single
dialogue topic t € L;. Proponent aims to make opponent concede ¢ while opponent aims to
make proponent give up t. So a plausible termination and outcome rule is that a dialogue
terminates with a win for proponent if opponent is committed to ¢, while it terminates with a
win for opponent if proponent is not committed to ¢ any more. In addition, for nonterminated
dialogues a notion of the current winner can be defined to control turntaking and relevance
of moves.

In the literature several ways can be found to formulate a protocol for dialogue. Following
[11, 8, 3, 6], our idea is that during a dialogue the participants implicitly build a ‘theory’ to



which the logic £ can be applied to determine the current winner. More precisely, £ will be
applied to all “‘current’ premises of either of the participants that are not challenged by the
other party. Proponent is then the current winner if the joint theory implies the dialogue topic
t while opponent is the winner otherwise. Note that with a player being a current winner we
mean no more than that the current state of the dialogue favours that party; the current winner
can change many times during a dialogue. The notion is used to control turntaking, with a
rule that a player is to move until he has succeeded in becoming the current winner (cf. [11]).

The precise form of our dialogue game is, to our knowledge, new. The idea is that the
theory constructed during a dialogue has the form of an inference graph and that the legality
of moves and the outcome of dialogues is defined in terms of this graph. The main reason
to take this approach is the resemblance of inference graphs to Wigmore charts, which have
proven useful in the semiformal analysis of evidential reasoning [1].

3.2 Defeasible inference

Since reasoning about evidence is defeasible, the logic £ of our dialogue system must be a
nonmonotonic logic. Following our earlier work in [15, 5] we choose for an argument-based
logic, combining some elements from [13] with any suitable notion of skeptical inference.
Pollock augments the inference rules of classical logic with a set of defeasible inference
rules called ‘prima facie reasons’. Arguments can be constructed by chaining reasons into
trees, starting from given input information. Each defeasible reason comes with one or more
undercutters, which specify the circumstances under which the inference is not warranted.
Accordingly, a defeasible argument can be defeated in two ways. It can be rebut with an
argument for the opposite conclusion, while it can be undercut with an argument why a prima
facie reason does not apply in the given circumstances. To be successful, an attack should be
of a certain strength. In the present paper, we will not discuss issues of strength and therefore
implicitly assume a given measure of relative strength between arguments.

Since the present focus is on reasoning with empirical generalisations, we will consider
just one of Pollock’s prima facie reasons, viz. a qualitative version of the statistical syllogism
(qualitative since in legal cases numerical probabilities are usually not available). Let = be
a connective from L, such that P = @ intuitively reads as“If P then usually Q. The only
inference rule that can be applied to formulas of this form is modus ponens. Furthermore, let
Py, ..., P, > Q) be shorthand for the metalevel expression “{P;, ..., P,} is a prima facie
reason for Q. Finally, let [] denote the translation of a metalevel expression ¢ in L,. Then

P, P = @ > @ (Statistical Syllogism)

There are two main undercutters for this reason, viz. weak and strong subproperty defeat,
which say that if for a special case of the antecedent the conditional does not hold (weak) or
a conflicting conditional holds (strong), then the original generalisation cannot be used:

weaks.d: PAR -(PAR= Q) > [P = Q> Q]
strongs.d.. PAR,PAR= —Q > [P = Q> Q]

Pollock also defines other reasons relevant for evidential reasoning, such as perception, mem-
ory and temporal persistence. Moreover, in [5] we formulated reasons for expert and witness
testimonies. In this paper, however, we will regard all these reasons as empirical general-
isations, so that they are applied with the statistical syllogism. The reason for this is that
inference rules are fixed and cannot be reinterpreted during a dialogue. In [5] we already
briefly discussed this issue, and [13] also mentions that his other reasons can be reduced to



the statistical syllogism. Finally, we deviate from Pollock’s logic in one respect. Pollock re-
quires that all arguments are ultimately grounded in a fixed and undisputable set INPUT of
propositions. However, in order to allow for stepwise backwards construction of an argument
during a dialogue, we make this set relative to a dialogue stage.

4 The new dialogue game defined

In this section the dialogue game is defined. Because of space limitations the definitions will
in some places be semiformal. Below ¢ is a well-formed formula of L; and A is an argument
of L. Dialogues take place between two players, a proponent pro and an opponent con. The
variable p ranges over the players, so that if p is one player, then p denotes the other player.
Also, the variable s denotes the speaker of a move. The topic language L, is that of first-order
logic augmented with the defeasible connective introduced above, and the logic £ is the
variant of Pollock’s system introduced above. As for notation, for any argument A, prem(A)
is the set of leaves of A (its premises) and conc(A) is the root of A (its conclusion).
The communication language L. consists of the following locutions:

e arqgue A. The speaker states an argument, either in support of the dialogue topic, or to
support a premise of another argument, or by way of counterargument.

e why . The speaker challenges that a premise  of an argument is the case and asks for
reasons why it would be the case.

e concede ¢. The speaker admits that a premise or conclusion ¢ of an argument is the case.

e retract ¢. The speaker declares that he is not committed (any more) to .

e cxplain (¢ = 1 = A). The speaker reinterprets a generalisation used in an argument
“©,p = 1, s0Y”. Aisan argument in £ without o = 1 such that ¢ is among the
premises of A and v is the conclusion of A.

The first four locutions are well-known from the literature, but the explain locution is new. It
captures unpacking since it allows the argument A to be of arbitrary complexity, as long as
1 is its conclusion and ¢ is among its premises. It also captures refining, since it allows A to
have an additional condition besides .

A dialogue is now a sequence of utterances of locutions from L. Each utterance is called
a move and a maximal sequence of moves in a dialogue by the same player is a turn. The
speaker of a move m is denoted by s(m). For any dialogue d = m, ..., m,, ..., the sequence
mq, ..., m; is denoted by d;, where d, denotes the empty dialogue.

4.1 Commitments and disputations

In our setup, dialogue moves have two kinds of effects, viz. on the players’ propositional
attitudes and on the dialogue’s inference graph. As for the propositional attitudes, we keep
track both of the players’ commitments and their disputations, i.e., the propositions they have
disputed. At the start of a dialogue these sets are empty. Since each proposition occurs only
once in the inference graph, these sets in fact label the nodes in the graph. Below C),(d) and
D, (d) stand for the commitments, respectively, disputations of player p after dialogue d.

We first specify the commitment rules (only changes will be specified).

Cs(d, argue A) = Cs(d) U prem(A) U {conc(A)}
Cs(d, concede ) = Cs(d) U {p}
Cs(d, retract ) = Cy(d) /{p}



It remains to define how an explain move affects the commitments. It is the only speech act
that can also commit the hearer.

o Cy(d, explain p = A) = Cs(d) U prem(A) U {conc(A)} if ¢ € Cy(d)
o C5(d, explain o = A) = Cs5(d) U prem(A) U {conc(A)} if ¢ € C5(d).

An explanation only commits its mover to the premises and conclusion of the new argument
if he was already committed to the original generalisation. This is to allow for explaining the
other player’s generalisation in order to attack it. Such an attack is impossible if the player
automatically commits himself to the explanation, as then he attacks one of his own commit-
ments. Note that the commitment rule for explain can commit the hearer to explanations with
which he disagrees. This is not a problem, however, since the hearer can always retract his
commitment and/or move an alternative explanation (as in the Rijkbloem case).

We must also keep track of the proposition a player has disputed, since arguments with
disputed premises will not count in determining the current winner. We define the following
disputation rules (again only changes are indicated).

e Dy (d, why ¢) = Ds(d) U {p}
e D(d, concede p) = Dys(d)/{¢}
e Dy(d, explain o = A) = Dy(d) U{p} if o & Cy(s)

The first two rules are obvious. The third rule says that if a player explains a generalisation
to which only his adversary is committed, he disputes the original generalisation . The
rationale of this rule is that otherwise there would be no point in explaining the generalisation
to attack the explanation, as there would still be the original undisputed argument.

4.2 The inference graph of a dialogue

Recall that in our setup the dialogue participants jointly build a theory during a dialogue,
to which the logic £ can be applied to identify the ‘current winner’. We implement these
ideas by formulating the jointly built theory as an inference graph [13] which, as remarked
above, has a close correspondence with Wigmore charts. The nodes of an inference graph are
propositions and the links are of two kinds. Support links instantiate a deductive inference
rule or prima facie reason and thus capture inferential dependencies between nodes. If a
support link operates on more than one proposition it is in fact an AND-link (depicted below
with an arc). Defeat links between nodes reflect relations of defeat between the corresponding
arguments for the nodes. The set INPUT? of current premises of d is defined as the set of all
leaf nodes in the inference graph of d.

Actually, our inference graph differs from Pollock’s in one respect. In Pollock’s graphs, if
a sentence appears in more than one argument, it also appears more than once in the inference
graph. In our graph each sentence appears only once, to avoid duplication of sentences. This
requires that, unlike in [13], defeat links are labelled with the arguments that are in the defeat
relation. Thus there can be more than one defeat link between the same two nodes.

Now the idea is that each move in a dialogue d is regarded as an operation on the inference
graph G, associated with d: arguments add nodes, support links and/or defeat links to the
graph, while all moves can affect the commitments and disputations stored as labels of the
nodes. Because of space limitations we omit the formal definitions, which should be obvious.

4.3 The current winner of a dialogue and turntaking

To apply a Dung-style inference notion to a graph G, to define the current winner of dialogue
d, we define the set Args;, of arguments in G4. Recall that arguments are trees of inferences,



so this is the set of all maximal subgraphs of GG, in which no node has more than one incoming
support link. The set DefArgs., of all defended arguments in G| is the set of all arguments
in Args¢,, of which all premises (= leaf nodes) are in the commitments of at least one player
and in the disputations of neither player. Thus the defended arguments are all arguments with
no disputed or retracted premises. As proven in [9], Pollock-style defeat can be equivalently
transformed to Dung-style defeat, so that DefArgs., corresponds to a Dung-style argumen-
tation framework AF; to which any of [7]’s dialectical inference notions can be applied. To
make sense in the present context, it must be a skeptical inference notion (in our examples
below the choice does not matter). We then say that proponent currently wins a dialogue d if
the dialogue topic ¢ is skeptically implied (according to the chosen inference notion) by AF,
and that opponent currently wins d otherwise. Note that the protocol implements a *burden of
questioning’ principle [19], as the current winner of a dialogue is calculated on the basis of
all commitments of one party that are not challenged by the other party.

With the notion of a current winner, a turntaking rule can be defined as follows: 7" is a
function that for each dialogue returns the players-to-move, such that 7'(dy) = pro and else
T'(d) = p iff p currently wins d. Thus the ‘resources’ are always allocated to the losing side,
which according to [11] promotes a fair and effective inquiry.

4.4 The protocol

The protocol P specifies the allowed moves at each stage of a dialogue. Its formal definition
is as follows. Together the conditions below imply that each dialogue starts with an argument
by proponent; its conclusion is the topic ¢ of the dialogue.

For all moves m and dialogues d it holds that m € P(d) if and only if all of the following
conditions are satisfied:
1 T(d) = s(m)
m was not already moved in d by the same player
Culd.m) i L
Cy(d,m) U Dy(d,m) = ()
If M is an argue A move (where ¢ is A’s conclusion), then extending GG; with A adds at
least one node or link to G, and

e either d = d,
e orp € Ggand v € Dy(s)
e or o defeats a node in G .
6 If m is awhy ¢ move, then
e ¢ c INPUT
* v & Dy(d)
o Ci(d) i/ ¢
7 If m is a concede ¢ move, then ¢ € G, and ¢ & C,(d)
8 If m is a retract ¢ move, then ¢ € Cs(d)
9 If m is an explain (¢ = A) move, then ¢ € G, and extending G, with argument A adds
at least one node or link to the graph
10 t € Cppo(d) and t & C.pp(d).

The first two conditions say that only the player-to-move can make allowed moves and that
a player may not repeat his moves. Conditions (3) and (4) regulate the players’ logical and
dialogical consistency. Conditions (5)-(9) specify specific conditions for each speech act type.
Condition (5) ensures that an argue move is only moved if it is the initial move, or if it
provides a reason for a disputed proposition, or if it attacks another argument in the graph.

O~ WN



Also, the argument moved has to extend the graph, so that arguments that are already in the
graph cannot be repeated. Condition (6) says that a proposition ¢ can be challenged only
if © is a leaf node in the inference graph, is not already disputed by the speaker and does
not classically follow from the speaker’s commitments. Condition (7) ensures that a player
concedes a proposition only if it is in the graph and the player is not already committed to
it. Condition (8) says that a player can only retract a proposition to which he is committed.
Condition (9) ensures that only generalisations that are already in the graph can be explained
and that an explanation extends the graph. Finally, condition (10) regulates termination of
dialogues. It implies that a dialogue terminates if either the proponent is no longer committed
to the dialogue topic or the opponent has conceded it: then no further move is allowed.

The protocol ensures relevance of moves as follows. To start with, only propositions that
were moved as premise of an argument can be challenged, conceded or retracted. Further-
more, a new argument must either be a counterargument to an argument in the inference
graph or a support for a challenged node in the graph, so players cannot just move any argu-
ment. Finally, players cannot repeat their moves.

5 The examples formalised

We now formalise the examples of Section 2 in our dialogue system. In displaying inference
graphs, parts involving retracted nodes will not be shown and undefended arguments will
be depicted with dotted lines. The sets C;(p) and D;(p) stand for player p’s commitments,
respectively, disputations after dialogue d;.

5.1 The Rijkbloem case

The prosecution, who is the proponent in this example, claims that Rijkbloem shot the father
(the dialogue topic) and brings forward the mother’s and the daughter’s witness testimonies.

- pros.
argue (1): mother’s testimony that Rijkbloem shot the father,

(2): daughter’s testimony that Rijkbloem shot the father,

ri: (witness A testifies that ) A (witness B testifies that ¢) = ¢,
80 (3): Rijkbloem shot the father

@ pro,: the initial argument is moved
C,(pro) ={(1), (). r,, )}

T C,(con) = {}

D, (pro) = {}

(@) (r) [ D=9

The only argument in G4, concludes to the dialogue topic, so the turn shifts to con, who now
first adds a hidden condition to r; and then disputes it.

-consg:
explain ry =
(1): mother’s testimony that Rijkbloem shot the father,
(2): daughter’s testimony that Rijkbloem shot the father,
(4): mother and daughter do not profit from lying,
ry: (witness A testifies that ¢ A witness B testifies that ¢ A the witnesses do not profit from lying) = ¢
so (3): Rijkbloem shot the father

The generalisation r; is now disputed. Note that if a player provides an explanation, the
original generalisation remains in the graph, to allow for alternative explanations of the same
generalisation (as pro is about to give). Also note that through moving the above explanation,
con has committed pro to the premises and conclusion of the new argument.

Next, con makes a why move, disputing the new premise:



- cons: why mother and daughter do not profit from lying

after explaning r,, con disputes (4)

Cy(pro) ={(1), (). r,, 3), 1, (4)}
C,(con) = {}

D,(pro) = {}

D,(con) ={r,, (4)}

The graph now contains two arguments for the dialogue topic. Although they have no counter-
arguments, both have a disputed premise, so con is the current winner and the turn shifts back
to pro (note that before cons the argument with (4) was defended, so pro was still winning).
pro disagrees with con’s way to explain r; and now explains r; in an alternative way by
saying that even if the witnesses profit from lying, if they make their statements separately,
then they still usually speak the truth. To make this move, pro first has to retract (4) and r,.

- progy: retract (4): the witnesses profit from lying

- pros: retract r1: (witness A testifies that ¢ A witness B testifies that o A the witnesses do not profit from
lying) = ¢

{:'(g)\\; pro retracts (4) and r2...
\7&//
!

Cq(pro) ={(1), (), r1, (3)}

o C,(con) = {}
| Diproy= ¢
() (@) > Ds(con) = {rL, (4)}

By retracting these propositions, pro indicates that he does not accept con’s explanation of
his original generalisation r,. pro must now provide a new argument for (3), as his original
argument using ry is still disputed. pro moves an alternative explanation to r;:

- prog.
explain ry =
(1): mother’s testimony that Rijkbloem shot the father,
(2): daughter’s testimony that Rijkbloem shot the father,
—(4): mother and daughter profit from lying,
(6): mother and daughter made their statements separately,
rs: (witness A testifies that o A witness B testifies that ¢ A the witnesses profit from
lying A the witnesses made their statements separately) = ¢
so (3): Rijkbloem shot the father

...and explains r,

Ce(pro) ={(1), (2), r,, (3), not(4), (5), rg}
Ny Co(con) = {}

S Dg(pro) = {}

) Dy(con) = {r,, (4)}

By incorporating —(4) as a premise, pro effectively concedes that mother and daughter had
reason to lie. Nevertheless, the graph now again contains a defended argument for the dia-
logue topic and since it has no counterarguments, pro is the current winner.

5.2 The Carroll case

The prosecution, who argues for the fact that Carroll was one of the two men in the car, gives
a simple argument for the fact that Carroll was near the crime.

- prox.

argue (1): the witness remembers he saw Carroll at the time of the crime,
ri: a witness remembers ¢ = ¢,

80 (2): the witness saw Carroll



@ pro,: the initial argument is moved

C,(pro) ={(1), (). r;}
R C,(con) = {}
D, (pro) = {}

(@) 1y [ogeon=0

The opponent now reveals a new attacking point by by explaining r;.

-consg:
explain ry =
(1): the witness remembers he saw Carroll at the time of the crime,
rL: a witness remembers ¢ = at the time of the crime the witness believed ¢,
so (3): at the time of the crime the witness believed that he saw Carroll,
rs: at the time of the crime the witness believed ¢ = ¢
so (2): the witness saw Carroll

con explains pro's generalisation r |

C,(pro) ={(1), (2), (3), ry, 1, 13}
C,(con) = {}

D,(pro) = {}

D,(con) ={r,}

Although pro is still winning, con can now move a counterargument.

- consg:
argue (4): the witness did not have a good look at the person near the crime,
(5): the witness saw Carroll as a suspect on the news after the crime,
ry: (a witness did not have a good look at person Py during the crime
A witness saw person Py as a suspect after the crime)
= at the time of the crime the witness did not believe that he saw person Po
S0 —(3): at the time of the crime the witness did not believe that he saw Carroll

The explained argument is defeated by a node in con's new
argument

Cy(pro) ={(1), (2), 3), ry, 1, 13}
C,(con) ={(4), (5), not(3), r,}
D,(pro) = {}

D,(con) ={r,}

©)

The arguments for (3) and —(3) are both defended. Supposing they are equally strong, they
defeat each other (indicated by the grey shadings) so that the dialogue topic is not skeptically
implied by AF,,. So con is the current winner and the turn shifts back to pro.

6 Conclusion

In this paper we have shown how two typical moves in legal dialogues can be regulated in
a formal dialogue game. Both moves reinterpret rather than extend an argument moved in a
dialogue. Such reinterpreting moves have so far received little attention in Al & Law research.
For the theory of evidential reasoning we have aimed to provide a better understanding of two
aspects of the critical testing of evidential arguments. For Al & Law models of legal dialogue
we have provided a possible formalisation of two types of dialogue moves that are important
in legal reasoning. The relevance of our contributions is not confined to evidential reasoning
since, as shown by [12] and [2], these moves also occur about other types of unwritten rules,
such as precedent rationales.
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