
Argumentation-driven information extraction
for online crime reports

Marijn Schraagen
M.P.Schraagen@uu.nl

Information and Computing Sciences, Utrecht University

Bas Testerink
Bas.Testerink@politie.nl
Dutch National Police

Daphne Odekerken
D.Odekerken@uu.nl

Information and Computing Sciences, Utrecht University

Floris Bex
F.J.Bex@uu.nl

Information and Computing Sciences, Utrecht University

ABSTRACT
A new system is currently being developed to assist the Dutch
National Police in the assessment of crime reports submitted by
civilians. This system uses Natural Language Processing techniques
to extract observations from text. These observations are used in a
formal reasoning system to construct arguments supporting con-
clusions based on the extracted observations, and possibly ask the
complainant who files the report extra questions during the intake
process. The aim is to develop a dynamic question-asking system
which automatically learns effective and user-friendly strategies.
The proposed approach is planned to be integrated in the dailywork-
flow at the Dutch National Police, in order to provide increased
efficiency and transparency for processing of crime reports.

KEYWORDS
Argumentation, Information Extraction, Relation Extraction
ACM Reference Format:
Marijn Schraagen, Bas Testerink, Daphne Odekerken, and Floris Bex. 2018.
Argumentation-driven information extraction for online crime reports. In
Proceedings of International Workshop on Legal Data Analytics and Mining
(LeDAM 2018). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The ideas presented in this paper are part of a a collaborative ini-
tiative of the Dutch National Police and Utrecht University for
developing a framework for (semi-)autonomous business processes
in the police organization using technologies from text and data an-
alytics together with computational argumentation and dialog. One
project under the umbrella of this initiative concerns technologies
to improve the intake of criminal reports submitted by civilians on
the topic of online trade fraud, which concerns cases such as fake
webshops and malicious second-hand traders on trading platforms
(e.g., eBay). Around 40.000 reports are filed each year, and the legal
background for trade fraud is a single article of the Dutch Criminal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LeDAM 2018, October 2018, Turin, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Code (art. 326) and a relatively small set of cases that are used as
legal precedents. This high volume and relative simplicity of such
cases makes them ideal for further automated processing.

For the case of online trade fraud, the Dutch police currently
collects online-submitted crime reports using a web interface which
requires citizens to fill out several predefined fields (such as the
name of the counterparty, bank account number, etc.) as well as
a free text description of the situation. Using this information the
police decides to either (a) discard the report because it does not
concern trade fraud, (b) accept the report and include it in the police
database for further processing, or (c) ask follow-up questions (by
e-mail) to the complainant in case more information is needed.
In the current situation, human analysts have to read through all
incoming reports and decide on either (a), (b) or (c). To improve
the efficiency of this assessment, we aim to develop a system that
automatically determines the appropriate course of action given a
report.

One way of handling (possible) trade fraud reports is to train an
algorithm to automatically determine which action to take given a
complete incoming report. This was explored in previous research
[4, 5], where classifiers were trained to classify reports as being of
class (a - discard report) or of class (b - accept report), based on the
elements of the report (address of suspect, trade site that was used,
shallow linguistic features). Given that the data is highly skewed –
only 16% of the incoming reports is normally discarded by human
analysts – the results are promising, with an F1-score of 67.5% for
class discard, 95.2% for class accept and a macro-average F1-score
of 80.8%.

One important issue with the above solution is that for a ma-
chine learning classifier it cannot be explained satisfactorily why a
complaint was discarded or accepted. For example, one important
feature that is used as input for the final classifier FC algorithm
is the output of another classifierWC trained on the (lemmatized)
words of the free text field. The explanation of FC’s decision to
accept a report is then, for instance, that the classifierWC gives
a probability of 0.8 to accept, based on the occurrence of certain
words (such as “never” and “tickets”) in the report text. In a le-
gal or law enforcement application, however, we need transparent
explanations that make sense from a legal and common-sense per-
spective, not explanations that are based on certain patterns in the
data. For example, we want to know that the complainant who filed
the report bought tickets from the (suspect) counterparty, but these
tickets were never delivered.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

LeDAM 2018, October 2018, Turin, Italy Marijn Schraagen, Bas Testerink, Daphne Odekerken, and Floris Bex

fraud

R4

paid
not sent

deception

R2 R3

false location false website

R1

not delivered

waited

Figure 1: Example argumentation graph.

In order to automatically assess trade fraud reports submitted
online, we turn to a combination of symbolic, argument-based rea-
soning about a case (similar to [7]) and non-symbolic information
extraction techniques that use machine learning. These extraction
techniques are intended to find basic observations such as “this
report concerns a ticket for a music concert”, “money was paid by
the complainant to the counterparty” and “nothing was delivered
to the complainant”, and use these observations as premises in legal
arguments to infer that, for example, the report concerns a possible
case of fraud and should therefore be considered for further process-
ing. Thus, the non-symbolic algorithms are fine-grained: the basic
observations are closer to sentences in the original report texts, so
their occurrence can be explained by exactly those sentences, and
more complex conclusions based on multiple factors in a case can
be checked by means of the argumentation.

In the rest of this paper, we discuss the concepts of our intake
system. The design and implementation of the system is part of
ongoing research, therefore the discussion in the current paper
is primarily intended to be conceptual (leaving a full evaluation
for future work). The current discussion is structured as follows:
Section 2 discusses the argumentation theory and inference mecha-
nisms that constitute the basis of the automated reasoning about
fraud. The process of collecting complaint information can be mod-
eled in different ways, which is described in Section 3. One of the
proposed approaches involves a dialog with the complainant, which
requires a question asking policy, as described in Section 4. As a
prerequisite for argumentative inference, the basic observations
need to be extracted from the input given by the complainant. For
textual input, natural language processing (NLP) techniques are re-
quired for this task. The observations as used in the graph generally
denote a relation between entities, e.g., a send-relation involving the
complainant, the counterparty and a package as relation elements.
The classification of entities and relations is described in Section 5.
Section 7 concludes the paper and discusses next steps.

2 ARGUMENTATION THEORY
The Dutch Criminal Code defines fraud as “misleading through
false contact details, deceptive tricks or an accumulation of lies”.
These elements can be traced back to observations or observable
facts collected from the victim and relevant third parties. Based on
the legal definitions in the Dutch Criminal Code, the relevant case
law and knowledge of working procedures of the police analysts
who currently assess the fraud reports, we have constructed an
argumentation theory about online trade fraud. To construct the ar-
gumentation theory, the right balance needs to be found in the level
of detail for observations. On the one hand we want an observation
to be directly observable from the input document, for instance ‘no
mention of payments occurs in this document’. On the other hand,
observations that are too detailed lead to a large argumentation
theory, which is more difficult to construct, maintain and use in
argument inference. We try to find a balance by interacting with
the police-side users of the system such as the people that handle
incoming complaints. If they think a statement is obvious from
a document then we do not require an argumentation structure
for those statements. Such statements are candidates for becoming
observables. For other statements such as ‘this document concerns
fraud’ it is not immediately obvious and we require some argumen-
tation as to why a crime is committed in that case. Currently, we
work with an argumentation theory of 46 rules and 26 observable
facts [1].

The argumentation rules and observables can be modeled in an
argumentation graph, where (sets of) observations provide support
or counter-evidence for other propositions. A simplified example
argumentation graph is presented in Figure 1. Inference rules are
conjunctive, e.g., ‘if the package is not delivered and the com-
plainant waited a for reasonable period of time then the package
is not sent’ (R1). The observation nodes are indicated with a gray
background in Figure 1.

Once the graph is constructed, the observed nodes are used
as input to infer conclusions. As per ASPIC+ [6] definitions, we
use inference trees as the data structure with which to represent
arguments. An inference tree consists of a set of premises and a con-
clusion connected by rules, with possible intermediate conclusions
(which are in turn premises for further conclusions) in between.
For example, in Figure 1, the inference tree for the conclusion not
sent contains the premises and the conclusion of rule R1, whereas
the inference tree for the conclusion fraud contains all nodes in the
graph. Arguments may attack each other because of inconsistent
conclusions (rebutting attack) or because a conclusion contradicts
a premise of another argument (premise attack). Given a set of
arguments and the attack relation, we determine the set of accept-
able arguments by calculating the grounded extension from Dung’s
abstract argumentation framework [3]. The grounded extension
contains all arguments that are conflict-free and that defend them-
selves against any attackers, that is, if argument A in the grounded
extension is attacked by argument B which is not in the grounded
extension, then there is an argument C in the grounded extension
that attacks B and thus defends A. Other options than grounded
semantics exist, but grounded semantics fit nicely with the conser-
vative nature of legal processes and can be computed in polynomial
time given the arguments.

Argumentation-driven information extraction for online crime reports LeDAM 2018, October 2018, Turin, Italy

Consider for example the situation that a package has been sent,
however the recipient was not at home and the delivery service
issued a note that the package has been returned to the sender.
For the purposes of the example, assume that the counterparty in
fact has bad intentions (e.g., sending a defective product) and has
used a false address. In this case the propositions false location, not
delivered, waited and paid are true, but not sent is observed to be
false (given the note from the delivery service). Based on these
observations and the argumentation graph presented in Figure 1,
using a forward chaining algorithm the conclusions deception, not
sent and fraud can be inferred. However, the conclusion not sent
conflicts with the observation sent. Therefore not sent and the de-
pendent conclusion fraud are not in the grounded extension, which
consists of the observation set and the conclusion deception.

When sufficient information is available the argument inference
will result in a stable state1. We say that a certain conclusion is
stable if either A) an argument for it is included in the grounded
extension and more information does not change this, or B) there is
an argument for the conclusion but this argument or any other ar-
gument for the conclusion can never be in the grounded extension,
or C) no argument can be made and neither will this be possible
with more information. For instance, consider a case where the
counterparty in the case has refunded the payment to the com-
plainant. In that case, there is no legal basis anymore to convict the
counterparty of fraud. So if this proposition is observed for a case,
then the system can establish that there will never be an argument
for fraud in the grounded extension. The information necessary
to result in a stable state needs to be provided by the complainant
(possibly combined with information from third parties, such as
banks or trade websites). The interaction with the complainant can
be modeled in different ways, which will be discussed in the next
section.

3 USER INTERACTION
As mentioned earlier, the Dutch police currently collects a report
(including free text but also predefined fields for addresses, trade
sites, etc.) using a web interface. The argumentation system as
described in Section 2 can be based on this document by providing
a conclusion (i.e., fraud or not fraud) if a stable state is reached,
and suggesting to ask follow-up questions otherwise. Here, the full
report document is used as input to instantiate propositions in the
argumentation graph.

Alternatively, the user interaction model can be changed into a
dialog paradigm. In this case the complainant does not file a report
document, but instead the system guides the complainant through
the reporting process by asking a number of questions. After each
question the argumentation graph is updated using the reply of the
complainant, and the dialog is finished when the argumentation
reaches a stable state. The questions can be selected dynamically,
such that the argumentation advances towards a stable state with
each question. This approach is similar to the current practice for
reporting a crime at a police station, where a police officer asks a
number of questions in order to fill out a crime report.

1Stability is not fully calculated (due to computational complexity). Instead, we deploy
a heuristic that runs polynomial in the number of argument graph edges.

Note that, for practical purposes, the two approaches can be
considered as opposite ends of the samemethodology, i.e., providing
a complete document to the argumentation graph is essentially a
dialog with a single user response. Similarly, a question within
a multi-step dialog can result in a complex user response which
can be considered a short document. Regardless of the length of
the dialog, the answers need to be parsed and processed in order
to extract relevant information. This could be avoided by using
closed-form questions with a list of predefined answers (e.g., ‘Did
you receive a package?’, ‘How long did you wait?’), however such
a dialog may prove to be insufficient for users to explain the details
of the situation.

4 QUESTION POLICY LEARNING
When using a dialog between the system and the complainant, we
want the system to get to a stable state as efficiently as possible.
Determining whether a state is stable consists of hypothesizing
over all possible future questions. As this is generally infeasible to
do, we turn to machine learning methods to train a questioning
strategy to approximate an ideal solution.

The policy that is to be learned maps observed propositions to
questions that can be asked or to a terminating action (accept/reject).
The action results in some response from the user, which consists
of new observations and possibly inferred conclusions (both propo-
sitions) that are added to the already known propositions. As a
result, we may view the state of the system as a set of propositions
and the actions as non-deterministic transitions between states. If
we model this as a Markov Decision Process, then we can use Q-
learning [9] to train a policy. Note that this requires the assumption
that the answer to a question is independent of how the current
set of propositions is obtained. For our Q-learning approach we
require a reward function. In order to promote efficient dialogs, we
give a small penalty for each action. To promote stability, we give a
high reward for reaching stable states. Finally, alongside a reward
function we need a user model that realistically provides responses
to questions (the probabilities of transitions in the Markov Decision
Process). To this end we currently work with handwritten models.
When the system is deployed it will gather user data and then a
data-driven model will replace the initial model.

As an example, using the argumentation graph in Figure 1, con-
sider the state in which false location is known to be true and all
other propositions are unknown. Suppose the Q-learning algorithm
selects ‘ask for false website’ as the next action to evaluate. This
question can support deception as a conclusion, however this con-
clusion was already supported by false location. The new state after
asking this question therefore has the same reward value as the
previous state, while the penalty is increased by performing the
question action. This will lead the Q-learning algorithm to reject
this state-action pair as part of the policy, and to consider alternative
actions instead.

5 EXTRACTING ENTITIES AND RELATIONS
As described in Section 3, user input (either from report documents
or from dialog responses) needs to be mapped to propositions in
the argumentation graph. These propositions generally consist
of a relation between relevant entities (people, objects, locations,

LeDAM 2018, October 2018, Turin, Italy Marijn Schraagen, Bas Testerink, Daphne Odekerken, and Floris Bex

etc.) described in the complaint. Various techniques can be used to
extract entities and relations between entities from text, ranging
from dictionary lists and syntactic patterns to complex parsing
algorithms and machine learning models. For Dutch legal data the
Dutch dependency parser Frog [2] can be used for named entity
recognition, for which the performance on legal data is evaluated
in previous work ([8]). For relation extraction the development and
evaluation of automatic methods is an ongoing effort in the current
research project, as described in the remainder of this section.

In order to use these techniques effectively in a law enforcement
application, the expected result from text processing should be con-
sidered carefully. Given the domain, for example, knowing whether
the victim has paid the counterparty is essential. However, other
information containing entities (e.g., details of contacts with other
victims) are not relevant for legal reasoning. The relevance of cer-
tain types of information determines how data should be collected
and processed in developing entity and relation extraction methods.
This includes a mapping from nodes in the argumentation graph
to entities and relations in the text. However, other propositions
may not be represented directly in the text, such as the use of a
false website. In such cases, partial information may be present
in the text (e.g., the counterparty operated a website), while the
proposition itself can only be validated after considering informa-
tion from a third party (e.g. checking with the ISP to prove that the
website is fake). However, in both cases the legal definition of the
crime (as expressed in the argumentation graph) is essential for the
development of text processing methods.

6 DATA ANNOTATION FOR RELATION
EXTRACTION

As we stated in Section 5, some of the propositions in the argumen-
tation graph are based on relations between entities in the crime
report documents. We plan to use supervised machine learning
techniques (see for example [10]) to automatically extract these
relations, which has shown to provide high accuracy for the cur-
rent dataset in preliminary experiments. Therefore, crime report
documents need to be annotated with the concepts identified in the
domain analysis process. Concepts of interest include residence,
payment and delivery information. Each concept has a number
of associated properties for which annotation could prove useful.
These properties are listed in Table 1.

Residence relations are interesting as they may indicate the
deceptive trick in which the fraudster gives a false address. In that
case, we often find in the report that the actual occupant of the
address was an unrelated person who did not know anything about
the advertisement. Furthermore, the address is often in a remote
relation, facilitating the fraudster to (falsely) promise to send items
per mail. To be able to detect these situations in the future, we
annotate the person name, location, role of the person and large
distance property. In future research the processing of coreferential
expressions (e.g., the token he to refer to an earlier mention of John
Smith in a document or dialog) will be addressed.

Payment and delivery information are captured by send and re-
ceive relations. The reason for this is that the complainant usually
only knows one side of the story: if the complainant intended to buy

concept property
residence name of person

location
role: complainant, counterparty, related or unrelated
large distance

send sender
recipient
object
indicator of relation
validity: true, false or unclear
type: product, payment, contact or other
role sender: complainant, counterparty or other
role recipient: complainant, counterparty or other
state object: fake, broken or other

receive sender
recipient
object
indicator of relation
validity: true, false or unclear
type: product, payment, contact or other
role sender: complainant, counterparty or other
role recipient: complainant, counterparty or other
state object: fake, broken or other

Table 1: Examples of properties of interest for annotation.

We have transferred €100,- to this man on account number 1234.

Relation: send
Sender: we
Role: complainant
Recipient: this man
Role: counterparty
Object: €100,-
Indicator: transferred
Status: sent (other options: ‘not sent’ and ‘unclear’)

Figure 2: Example annotated sentence.

a product, he or she typically claims having sent money to the coun-
terparty without having received the product. We do not know for
sure if the counterparty received the money and/or sent the product,
as there is a possibility of a delivery or payment failure by a third
party. The send and receive relations are ternary, having a sender,
receiver and object, although some of the entities may be omitted
in the text: for instance, in the sentence ‘I did not receive anything’
the sender is missing. For the sender and receiver, we annotate the
corresponding character indices and the role (complainant, coun-
terparty or other). In some complaints, the complainant reports
that he or she received a broken product. This suggests a civil case
instead of a fraud case. Therefore, we annotate not only the char-
acter indices but also the state of the product. Furthermore, we
annotate the word(s) indicating a send or receive relation and the
validity of the relation. An example annotated sentence (translated
for illustration purposes) is provided in Figure 2.

Argumentation-driven information extraction for online crime reports LeDAM 2018, October 2018, Turin, Italy

We plan to use the annotations in a classifier that, given a set
of tokens, decides if they are entities in one of the aforementioned
relations. The output of this classifier can then be mapped to propo-
sitions for the argumentation graph. Such a classifier is intended
to operate on free text input, using simple features such as the
presence of selected keywords as well as more complex features
such as lemmas or grammatical dependency paths. For real-world
free text the computation of these features may be unreliable (e.g.,
as a result of misspellings in the source text) or, even with reliable
features, a real-world example may not conform to the regularities
found in the training set. However, using a suitable classifier and
an appropriate training set size, the model is expected to generalize
over irregularities to a certain extent. Moreover, as mentioned in
Section 3, using a dialog component within the system will provide
some context to interpret the results of the relation classifier.

7 CONCLUSION
In this paper we have described an approach to automatically han-
dling the intake of criminal reports filed online by citizens. The
proposed approach combines different types of techniques (i.e.,
natural language processing, argumentation and Q-learning) to
obtain a system that A) handles natural language, B) produces argu-
ments for complex conclusions and hence provides understandable
and legally sensible explanations for decisions regarding complaint
reports, and C) is capable of gathering information from its environ-
ment efficiently by only asking the most relevant questions to the
user and terminating the process if no more relevant information
is to be found.

The algorithms ans implementations presented in this paper
are currently under development and a number of prototypes are
working or nearing completion. Furthermore, parts of the system,
such as automatically drawing conclusions using the argumentation
graph, the named entity recognition and basic relation extraction,
have been implemented in the existing development systems at the
Dutch National Police.

The techniques developed are generalizable beyond the domain
of online trade fraud. Extending the system to other domains will in-
volve a substantial (knowledge) engineering effort: argumentation
theories will have to be built for different domains, and algorithms
for extracting new types of observations will have to be trained.
While our solution thus suffers from the classical “knowledge engi-
neering bottleneck” that has hampered knowledge-based systems
for decades, we believe the focus on smaller, relatively simple assess-
ments makes true autonomous systems more feasible. Furthermore,
building and maintaining a small argumentation theory may be
more suitable for general IT personnel at the Dutch Police than
training machine learning algorithms on a new dataset. Finally, the
algorithms for entity and relation extraction are aimed to be as
general as possible, with good performance in different domains.
Thus, other tasks and processes within the police organization can
be gradually incorporated into the framework.

REFERENCES
[1] Jeroen Bergers. 2018. Improving online trade fraud complaint handling using

argumentation theory. BSc. Thesis. Utrecht University.
[2] Antal van den Bosch, Bertjan Busser, Sander Canisius, and Walter Daelemans.

2007. An efficient memory-based morphosyntactic tagger and parser for Dutch.

In Selected Papers of the 17th Computational Linguistics in the Netherlands Meeting.
Netherlands Graduate School of Linguistics, 99–114.

[3] Phan Minh Dung. 1995. On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence 77 (1995), 321–357.

[4] Ilse van ’t Hul. 2018. Improving online trade fraud complaint classification by
applying machine learning techniques. BSc. Thesis. Utrecht University.

[5] William Kos, Marijn Schraagen, Matthieu Brinkhuis, and Floris Bex. 2017. Classi-
fication in a Skewed Online Trade Fraud Complaint Corpus. In Preproceedings of
the 29th Benelux Conference on Artificial Intelligence. 172–183.

[6] Henry Prakken. 2010. An abstract framework for argumentation with structured
arguments. Argument & Computation 1, 2 (2010), 93–124.

[7] Henry Prakken and Giovanni Sartor. 1996. A Dialectical Model of Assessing
Conflicting Arguments in Legal Reasoning. Artificial Intelligence and Law 4
(1996), 331–368.

[8] Marijn Schraagen, Matthieu Brinkhuis, and Floris Bex. 2017. Evaluation of
Named Entity Recognition in Dutch online criminal complaints. Computational
Linguistics in The Netherlands Journal 7 (2017), 3–16.

[9] Chris Watkins. 1989. Learning from Delayed Rewards. Ph.D. Dissertation. King’s
College London.

[10] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. 2015. Classifying
Relations via Long Short Term Memory Networks along Shortest Dependency
Paths. In Proceedings of EMNLP 2015. Association for Computational Linguistics,
1785–1794.

	Abstract
	1 Introduction
	2 Argumentation Theory
	3 User interaction
	4 Question policy learning
	5 Extracting entities and relations
	6 Data annotation for relation extraction
	7 Conclusion
	References

