
Evaluating Design Rationale in Architecture
Pim de Jong

Sogeti Netherlands B.V.
Nieuwegein, The Netherlands

pim.de.jong@sogeti.com

Jan Martijn E. M. van der Werf
Utrecht University

Utrecht, the Netherlands
j.m.e.m.vanderwerf@uu.nl

Marlies van Steenbergen
Sogeti Netherlands B.V.

Nieuwegein, The Netherlands
marlies.van.steenbergen@sogeti.com

Floris Bex
Utrecht University

Utrecht, the Netherlands
f.j.bex@uu.nl

Matthieu Brinkhuis
Utrecht University

Utrecht, the Netherlands
m.j.s.brinkhuis@uu.nl

Abstract—Although architecture is often seen as the culmina-
tion of design decisions, design rationale is a supposititious child
in architecture documentation. Many architecture frameworks
and standards, like TOGAF and ISO/IEC 42010, recognize the
importance, but do not offer any support in the rationale process.
Recent initiatives have shown that simple means help in providing
more rationale. However, there are very few studies that give
evidence whether more rationale indeed leads to better quality.

In this paper, we propose a non-invasive method, the Rationale
Capture Cycle, that supports architects in capturing rationale
during the design process. Through a controlled experiment with
10 experienced architects, we observe the effectiveness of the
method in terms of design quality through different measures.
The results of our experiments show that: (1) better rationale is
strongly correlated with high quality, and (2) the test group with
our proposed method outperforms the control group.

Index Terms—design reasoning, design rationale, enterprise
architecture, architecture documentation

I. INTRODUCTION

Architectures, or more specifically architectural descrip-
tions, refer to the fundamental elements of a system and how
they relate to comprise a perspective of the system in its con-
text [1]. In the case of Enterprise Architecture the architectural
description hence concerns the organization or enterprise, its
IT systems, (functional) units, business processes and external
contacts such as customers and suppliers.

Architecture is often regarded as the culmination of design
decisions [2], [3]. Such design decisions are made during the
design reasoning process [2], in which we have to identify
the context and requirements of the enterprise, formulate and
structure the design problem, think about possible solution op-
tions and make trade-offs between different options. Designing
complex architectures for larger enterprises can be considered
a wicked problem [4]: the design problem is ill-defined; there
is no stopping rule to tell when an acceptable solution has been
reached; it is difficult to tell what is true or false in a design (at
least not before implementation); resolving one design issue
can give rise to other related design issues; and understanding
the problem depends on how the designer wants to solve it.

In the case of wicked design problems it is important to
capture the design rationales, the reasons underlying design
decisions. Properly documenting architectural design decisions
and their rationale is essential to any architectural description,

as it explains the reasoning behind why the architecture is
as it is [5]. Without proper explicit rationale, the architecture
degradates [6], and architectures become increasingly brittle
over time if documentation of decisions is not kept. For
example, architects may leave the organization, switch roles or
switch projects. Additionaly, architectural documentation with
rationale makes it easier for architects to understand a design,
especially if the architects were not involved in the original
design process: Tang et al. [5] found that architects strongly
agree on the premise that they cannot understand a design
effectively without its rationale.

In architecture design1, many methods and techniques for
reasoning about architecture designs have been proposed.
Examples of specific techniques are solution option generation,
constraint analysis, risk analysis, assumption analysis, and
trade-off analysis. The research and presentation of these tech-
niques, however, is fragmented, and a single method that en-
compasses all of them is lacking. Frameworks like IBIS (Issue-
Based Information Systems) [7] and QOC (Questions-Options-
Criteria) [8] combine different concepts such as options, issues
and constraints and provide a language and accompanying
modelling tool to map design rationale. A major problem of
this focus on “rationale mapping” is that it interferes with the
design reasoning process: there is a cognitive overload that
results from having to learn and use such tools at the same
time as having to discuss and think about complex architectural
designs [5]. Although widely available, these frameworks are
therefore still underutilized in industry [5], [9], [10].

Architecture development methods such as the Togaf Archi-
tecture Development Method [11] also recognise the impor-
tance of careful design reasoning and include separate steps
for, for example, requirements analysis and cost-benefit analy-
sis. Furthermore, architectural standards such as SysADL [12],
GRASP [6] and ISO/IEC 42010 [1] mention the importance of
the architecture rationale, that is, the reasons underlying the
important architecture design decisions. However, the focus
of these methods and standards lies firmly on the description
of the enterprise or system itself, and not on the reasoning

1Note that here we look at both Enterprise Architecture and Software
Architecture, as many of the general frameworks, standards and techniques
for each of the architectural fields are very similar.



process or the product of this process, the design rationales,
which are only mentioned superficially. In other words, it is
not exactly elaborate how designers should reason and capture
rationale.

Recently, initiatives have been started to develop and eval-
uate normative methods that encourage and support the ar-
chitecture design reasoning process and associated rationale
capture. For example, Razavian et al. [13] employ reflective
questions by an external observer, Schriek et al. [14] present
a card game, and Keil et al. [15] use checklists for decision
making. All studies show that with simple means, the rationale
process can be improved.

On the other hand, only very few studies study the benefit of
improving the rationale process. For example, Tang et. al. [16]
show that architects produce, on average, better architectures
by explicitly reasoning about their design decisions. Their
study shows that design reasoning principles are applied more
effectively when provided with a systematic approach.

Under practicioners, there is the general perception that,
although design rationale should be captured in documenta-
tion, a proper methodology is lacking [5]. This observation
is the starting point of our paper: “What is an effective
method to support the provision of design rationale in the
architecture design process?”. To answer this question, we
study the existing body of knowledge in enterprise architecture
and design reasoning, to develop a new method: the Rationale
Capture Cycle. To study the effect of the method, we perform
a controlled experiment with 10 experienced enterprise archi-
tects. We define effectiveness as the perceived quality of the
solutions delivered by the architect, and measure this in three
ways: (1) through peer review by the participating architects,
(2) by analyzing the documentation on rationale usage, and (3)
by a ranking of an external architect. Our results are twofold:
(1) better rationale is strongly correlated with high quality, and
(2) the test group outperforms the control group.

The remainder of this paper is structured as follows. First,
we discuss in Section II the setup of our research. Section III
provides a background in design rationale, and introduces our
treatment method, the RCC. The results of the experiment are
presented in Section IV and discussed in Section V. Section VI
concludes the paper.

II. RESEARCH DESIGN

The ultimate objective of this study is to provide a means by
which architecture designers can systematically employ design
reasoning. To this end, we apply design science [17]. First we
construct a method through method engineering. Through a
controlled experiment we evaluate the effect of the method:
the method is given as treatment to the test group, whereas the
contol group works without the method. For the experiment,
we followed the guidelines by Wohlin et al. [18].

A. Method Design

To construct a method that supports the reasoning process,
we followed the method association approach [19]. The final
method has been developed through two iterative cycles. In

the first cycle, we studied existing rationale methods and
techniques and architectural frameworks and languages. This
resulted in a set of requirements, both on the steps in the
method, and which rationale techniques could be employed in
each step. Next, the method has been validated and discussed
through semi-structured interviews with 10 architects. The
feedback we received from these interviews were then used
to improve and finetune the resulting method.

B. Experiment Design

To evaluate the effect of the method, we conduct a con-
trolled experiment with two groups: a test group that receives
the method as treatment, and a control group who works
without [18]. We applied stratified sampling for assigning the
participants to the groups, controlling the factors experience
(m=30yr, SD=8), age (m=56yr, SD=7), and familiarity.

The experiments consists of two stages. In the first stage,
each participant has to individually solve a case where they
are asked to design in two hours a complete architecture, and
provide textual rationale for their reasoning process. First, the
case is introduced by one of the authors to all the participants
in a group session of about 30 minutes. Next, the participants
in the control group leave the session and start on their
solution. In the mean time, the participants in the test group
are asked to use the treatment before they start to work on their
assignment. At the end of the design session, each participant
fills in a questionnaire about the reasoning process, the case
and the method. This stage results in 10 solutions to the case:
five for each group.

In the next stage, each participant ranks three solutions by
dividing 100 points to the different solutions, without creating
a tie. The design of the ranking satisfies the following criteria:

• Each participant reviews at least a solution from both
groups, not being their own;

• Each combination should be unique, i.e., no given ranking
occurs more than once;

• Each solution is ranked an equal number of times, equally
distributed over the two groups;

• In the ranking no cluster of solutions is disconnected from
the others, i.e., a total order can be induced from the
partial orders formed by the individual rankings;

To observe the effect of the treatment, we use four measures:

1) The total points given by the ranking of the architects,
to provide the relative design quality of the solutions;

2) The documentation delivered by the participants is
counted, coded and analysed;

3) A full ranking of all solutions created by an external
enterprise architect;

4) The results from the questionaire;

The coding schema used for the second measure is based on
the available literature on rationale techniques gathered during
the method design. Based on these measures, we evaluate
whether the proposed method is effective for capturing ra-
tionale, and for delivering better quality.



Table I
ARCHITECTURE RATIONALE TECHNIQUES, THEIR DEFINITION AS USED DURING THE CODING STAGE, AND ITS SOURCE

Rationale type Definition Source
Design decision Final decision made during the reasoning process. [20]Problem analysis Key issues and requirements in a design.
Constraint analysis Limitations on the design, how they relate and materialize.

[5]Assumption analysis Unknown factors affecting the design, and their consequences.
Option analysis Alternatives addressing the same design problem. [20]
Benefit analysis Benefits a design option can deliver to satisfy the requirements. [5]Weakness analysis Weaknesses a design option have and their effect to the design.
Trade-off analysis Trade-offs to compare alternatives and its supporting rationales. [21]
Risk analysis Unknown factors with negative implications, on a design option and

how they impact the design.
[20]

Evaluation Feedback loop to rethink critical elements in the rationale. [22]Reflection Verification of the architect’s own reasoning process.

C. Case Design

Participants are presented a fictional case of a Dutch bank.
The case describes a bank that started as an exclusive bank
serving generations of prosperous families, but now wants to
expand its clientage. In this process, the bank is facing a
surge of new clients that bring about new wishes and needs in
terms of the service. As the services provided by the bank are
outdated, the bank hires architects to provide goal architecture
models to sketch the ideal system landscape for them. The
architects need to provide an architecture description in which
their rationale must be documented.

The case has been designed such that it is simple and clear
enough to understand, and feasible to complete within 2 hours,
yet be intricate enough, so rationale can be present. A pilot
test with 4 master students from Utrecht University is held to
validate the case and eliminate any ambiguous elements. The
pilot showed that the case is challenging, especially given the
limited amount of time. As architects have more experience,
and constantly need to make decisions on what to pursue, we
decided to keep the length and level of difficulty.

III. CAPTURING DESIGN RATIONALE

Design reasoning refers to the process of reasoning on
design issues and coming to a design decision [5]. It relies
on critical and reflective thinking, evaluation, discussion and
logical inferencing. Key principles include problem struc-
turing, assumption recognition, and trade-off analysis. The
product of design reasoning is design rationale, which can
be defined as the justification for a design decision. This
includes the entirety of explicit reasoning that was required to
make a decision, i.e. the explicit culmination of argumentative
knowledge to weigh and elect options.

A. Architecture Rationale

The Oxford Dictionary defines rationale as a “reason or
intention for a specific action”. In the context of architecture
design, rationale is considered to be “the reasons behind
a design decision, the justifications for it, the alternatives
considered, trade-offs evaluated and argumentation that led to
the decision” [23]. An overview of the most frequently used
rationale techniques is presented in Table I.

Design rationale can occur in various forms and types, de-
pending on their use and current need [24]:

• Argumentation based: the design rationale presents ar-
guments that define the design. These arguments present
pros and cons for each alternative, option and issue.

• History based: the design rationale represents the design
history of a system. This includes the dimension of time,
i.e., design decisions are included chronologically.

• Device based: the design rationale is based on a model of
the device or system itself. The model can simulate the
behaviour of the system, from which the design rationale
can be deduced.

• Process based: the design rationale is completely inter-
woven with the design process itself and therefore guides
the format of the rationale.

• Active document based: the design rationale is predefined
and already saved in the system. When an architect
designs an architecture, the design rationale system au-
tomatically generates rationale for the elements designed
by the architect.

These types are by no means exhaustive and may simulta-
neously be true. For example, architecture documentation can
contain a full history of all options with their pros and cons,
and which options have been chosen. Which type of rationale
is used, also depends on how rationale is captured. Lee [23]
identified five major methods to do so:

• Reconstruction constitutes the production of rationale
by reasoning from existing knowledge (introspection).
Reconstruction is always post-mortem, i.e., completely
separated from the design process. As such is it non-
intrusive to the design process itself.

• Record and Replay captures rationale during the design
process. Design problems are identified, alternatives are
considered and criteria and claims are defined whilst
design is taking place. This can occur through digital
means (forums, videoconferencing) or through regular
face to face meetings.

• Methodological By-product: in this approach the ratio-
nale is produced as a logical by-product of following a
method in the architecture design process. This method
constitutes capturing the rationale. The idea is that the



1. Define the problem. 
Identify and describe the key 

issue(s) in your design or the 

requirement you want to satisfy.

8. End loop.
Evaluate the decision and reflect 

on the reasoning process. Document 

the final design decision. 

3. Benefits & weaknesses.
Describe the benefits and 

weaknesses of your options and 

elaborate on how they may affect 

the design.

5. Constraint analysis. 
Describe any constraints that may 

impede on the successful 

implementation of your design.

4. Assumption analysis. 
Recognize and describe any made 

assumptions when expanding on the 

potential options.

6. Risk analysis.
Describe any potential factors that 

can have negative implications on 

the design.

7. Trade-off analysis. 
If a design cannot satisfy multiple 

requirements and constraints 

simultaneously, describe why you 

made the design decision as 

opposed to another.

Problem

Options

2. Explore options. 
Explore and describe the 

various options and alternative 

solutions on how the problem 

or requirement can be 

addressed. 

Figure 1. The Rationale Capture Cycle

architect follows a method that supports generating ratio-
nale during the design process.

• Apprentice: the apprentice approach consists of the inter-
action between a designer and a computer system. The
system verifies design decisions made by the designer
and asks questions whenever an action is made which it
does not understand.

• Automatic Generation: constitutes a system that produces
rationale from an existing rationale base. The system
analyses a complete history of designs and defines the
how’s and why’s of the performed actions.

The main design philosophy revolves around creating a
method that captures rationale whilst least interfering with reg-
ular design activities. Therefore, the most successful rationale
capture approach is likely to be a methodological by-product
approach [23], combined with process- and argumentation-
based rationale. Such combination should result in a feasible
and approachable method [24].

B. The Rationale Capture Cycle
Previously proposed methods for rationale capture were

ineffective due to a variety of reasons [5]. Methods are either
(1) too limited in depth: offering no real handson support,
(2) too complex: overly daunting for an average user, or
(3) too specific: often inapplicable in various domains or
projects. These factors all contribute to the lack of industry
standards [5]. The Rationale Capture Cycle (RCC) is created
around countering these three factors.

The sequence of the RCC is based on the Planning and
Problem-Solution Co-Evolution theory [20]. As early deci-
sions heavily influence the process in which design activities
are carried out [20], designers should consider a high-level de-
sign plan first, i.e., one should identify the main requirements
and design issues first.

The rationale process is triggered through the identification
of a problem, such as the satisfaction of a requirement. For
this solution, many different options can be generated and
explored, which all need to be analysed. For each option, the
architect should analyze the possible benefits and weaknesses,
which assumptions are foundational to the option, which
constraints are either being put by the option, or hamper the
option, the risks involved and a final weighted decision based
on a proper trade-off analysis. For all activities, the architect
should evaluate and reflect to what extent the process has been
followed, and critically assess what could be improved to the
rationale, and the process itself. The RCC captures each of
these activities in a cyclic manner.

IV. RESULTS

In the controlled experiment, we observed three measures
to define a ranking: the points awarded by the participants,
the coding of the documentation, and the full ranking by the
external architect (Table II).



Table II
RANKINGS BY THE DIFFERENT MEASURES: POSITION, POINTS,

DOCUMENTATION AND EXTERNAL RANKING. ELEMENTS MARKED WITH ∗

OR ∗∗ ARE RANDOMLY ASSIGNED, AS THEY HAVE THE SAME AMOUNT OF
POINTS.

Pos. Points Doc. Ext. Pos. Points Doc. Ext.
1. T4 T4 T4 6. C1 ∗ C2 C1
2. T2 T2 T2 7. T5 ∗∗ T5 T5
3. T3 C5 T3 8. C2∗∗ C1 C2
4. C5 T1 C5 9. C3 C4 C4
5. T1 ∗ T3 T1 10. C4 C3 C3

Table III
SOLUTIONS RANKED BASED ON THE ASSIGNED POINTS. ELEMENTS

MARKED WITH ∗ OR ∗∗ ARE RANDOMLY ASSIGNED, AS THEY HAVE THE
SAME AMOUNT OF POINTS.

Rank Solution Points Rank Solution Points
1 T4 160 6 C1∗ 95
2 T2 130 7 T5∗∗ 90
3 T4 115 8 C2∗∗ 90
4 C5 110 9 C4 60
5 T1∗ 95 10 C3 55

A. Design Quality

The first measure to observe the design quality is the relative
ranking provided by the participants themselves. Recall that
each architect ranked three solutions by dividing 100 points to
the solutions, and that ties were not allowed. Each participant
received at least one solution from both groups. By summing
the points per solution, we obtain the relative ranking by the
participants.

None of the participants gave a solution 0 points. Half of
them used a 50-30-20 point scale. The other distributions were
45-35-20 (two times), 75-20-5 and 65-20-15 (both one time).
The solutions of T1 and C1, and of T5 and C2 received an
equal amount of points. To maintain a full ranking, these were
randomly assigned to their respective positions. This results
in the ranking of Table III. A first observation is that three
solutions out of the top 4 are from the test group.

B. Rationale Documentation

The participants had to explicate their entire reasoning pro-
cess in the documentation, including the justifications for their
design decisions. As a next step, we coded the architecture
documentation of each participant to distinguish the individual
rationale types in each document. The coding was performed
by one of the authors, after which the results were validated
and discussed with two of the other authors to reach consensus.
The coding schema used is given in Table I. During the coding,
we made an explicit distinction between identifying a rationale
technique, and describing it. For example, one can identify a
risk, but not describe why it is a risk, or how the architecture
is affected. Additionally, we counted the number of words in
the documentation.

The coding shows that the participants of the test group
used 122 rationale elements, whereas the control group used
69 elements. These were individual elements of rationale,
elaborating on why they made certain design decisions. In-

terestingly, there are three elements that have no occurrence
in the documents across the various participants: evaluation,
reflection, and assumption definition. Important to realize
is that this does not imply that these techniques have not
been used, solely that in the documentation these were not
demonstrated explicitly.

C. Feedback by the Architects

At the end of the session, the architects of both groups were
asked to fill in a questionaire to give feedback and additional
thoughts on the RCC, the case, and the overall experiment.
Most questions regarding the RCC concerned added value,
effectiveness, readability, usability, intuitiveness, and ease of
use.

a) Added value & effectiveness: There were mixed feel-
ings about the value and usefulness of the architecture: two
architects found the case too small for using something like
the RCC, whereas three other architects claimed that the RCC
helped them to capture rationale more easily, especially since
the RCC made them capture assumptions that they otherwise
would not have made explicit. The RCC gave them structure
to the process which is “desperately needed”.

b) Readability & usability: Most architects found the
RCC easy to read and understand. One architect mentioned
the cycle was confusing, as there is no real end to the process.

c) Intuitiveness & ease: Most architects mentioned that
the RCC did not intrude on the design process, and that it
was easy to use. One architect found that the RCC asks for a
too high investment of time, which is only realistic if the case
would offer choice moments of larger size.

d) : The participants were also asked to share their
thoughts regarding the case. Out of all 10 architects, 4 mention
that the case did not accurately mimic a real life scenario,
as the architect normally has a chance to ask and research
the scenario, which is inherent to the type of case provided.
Half of the architects mentioned the time limit: time was too
short to create a complete architecture for the case, uttering
that their models and documentation were unfinished by the
time the session ended. One architect rather liked the case,
as it demonstrated the realistic scenario of a board that does
not accurately know what it wants. Overall the architects
found the RCC helpful in better structuring the architecture
documentation and the reasoning process.

V. ANALYSIS AND DISCUSSION

Answering whether the RCC is an effective method to
stimulate the rationale process, boils down into two questions
we need to analyze: ““are the different rankings in agreement
about the quality of the architectures?”, and “perform the
participants in the test group better than the control group?
”. In the next subsections, we analyze the results to answer
these questions.

A. Agreement Between the Rankings

A scatter plot of the rankings is depicted in Figure 2. The
plot shows that each solution is either in the lower-left or in



Table IV
ANALYSIS OF THE DIFFERENT SOLUTIONS, BASED ON THE CODING SCHEMA IN TABLE I

C1 C2 C3 C4 C5 Total T1 T2 T3 T4 T5 Total
Word count 311 251 114 317 605 1598 289 511 284 490 472 2046
Rationale type
Design decision 2 3 2 2 9 4 8 3 1 4 20
Problem Ident. 1 3 4 8 3 4 3 4 2 16
analysis Descr. 2 4 6 2 4 1 7
Constraint Ident. 5 5
analysis Descr. 1 1
Asumption Ident. 5 5
analysis Descr. 0
Option Ident. 2 2 2 2 6 14 3 10 3 3 1 20
analysis Descr. 1 1 4 2 5 13 6 2 1 1 2 12
Benefit Ident. 5 6 3 4 18 1 6 3 7 1 18
analysis Descr. 1 1 3 1 4
Weakness Ident. 4 4
analysis Descr. 4 4
Trade-off Ident. 1 1
analysis Descr. 1 1
Risk Ident. 1 1
analysis Descr. 1 1

Evaluation
Reflection
Total 11 13 11 11 23 69 19 32 17 42 12 122

the upper-right quadrant. Furthermore, the grayscale of the
solutions shows that solutions in the upper right quadrant are
higher ranked by the external architect as well.

The scatter plot indicates a high corration between the
different rankings. To confirm this, we calculated Spearman’s
rank correlations pairwise (Table V). As the results shown,
all three rankings have a very high, significant correlation.
From these correlations we may conclude that more rationale
is positively correlated with better quality. To exclude the
possibility that word count influences the rankings as well, we
used Spearman’s rank correlation to evaluate whether word
count has an influence fairly high correlation, At the table
shows, the correlations with word count are not significant.

B. Effectiveness of the RCC

Each of the rankings have the same solutions in the top 5,
although the exact order slightly differs between each of them.
Another observation is that in this top 5, four solutions come
from participants of the test group. This is a clear indicator that
the participants in the test group perform better than the control
group. To test this hypothesis, we used Wilcoxon’s signed rank
exact test on each of the rankings to evaluate whether the test
group performs better by comparing the median rank with the
control group. As Table VI shows, the significance of each
of the rankings is smaller than 0.05. We thus may conclude
that participants in the test group create solutions of better
quality than the control group.

Another aspect of effectiveness of the method concerns
the time dimension. Many practitioners consider lack of time
and/or budget (60.5%) as the most common cause of not
documenting design rationale [5]. In this study, all participants
had two hours to fulfill the exercise. Although on average,
the participants of the test group took more time (m=130),
than the control group (m=107.2), the difference was not

significant (U=5.500, p=.138). In other words, our proposed
method is non-invasive, and supports the process well, which
was confirmed in the feedback by the participants. Hence, we
may conclude that participants in the test group do not take
more time than participants in the control group to come
with solutions of better quality.

C. Influence of Rationale Techniques

As a next step, we compared the rationale techniques present
in the solutions with their ranking. For the total number of
rationale techniques applied, and for each individual rationale
technique, we created two hypotheses:
HT

0 There is no difference in the frequency of technique
T between the groups.

HT
1 There is a difference in the frequency of technique

T between the groups.
After analysis, it turns out that for none of the hypotheses
the difference is significant. Hence, the individual techniques
used do not account for the observed phenomena. Interestingly,
test groups use more rationale techniques: the frequency is
increased with nearly 77%. Also, the spread of which rationale
types occur are more comprehensive in the test group. The
participants of the test group used almost all rationale types
(16 / 19 were present), whereas the control group omitted 12
rationale types (7/19 were present). It is interesting to note that
the increase in coded rationale types seem to be widespread,
and not due to isolated elements. Comparing the rationale
in the documentation of the top 5 solutions with the other
solutions, reveals that all solutions in the top 5 contain more
rationale techniques than the others.

D. Threats to Validity

As for all experiments, there are threats to validity that need
to be addressed [18].



C1

C2

C3

C4

C5

T1

T2

T3

T4

T5

1

2

3

4

5

6

7

8

9

10

12345678910

Total points rank

D
oc

um
en

ta
ti

on
 f

re
q.

 r
an

k

Expert rank

a

a

a

a

a

1

3

5

7

9

Figure 2. The rankings of Table II visualised, where the axes represent the total number of points attributed by the participants (horizontal) and the document
frequency rank (vertical). The external expert rank of is represented by the grayscale, where darker (black) is a lower rank, i.e., a higher perceived quality.
An approximate monotonic relationship can be observed between all three variables.

Table V
SPEARMAN’S RANK CORRELATION FOR THE RANKINGS. VALUES MARKED WITH + HAVE SIGNIFICANCE p < 0, 05, VALUES MARKED WITH ∗ HAVE

SIGNIFICANCE p < 0.001, UNMARKED VALUES HAVE SIGNIFICANCE p > 0, 05.

Ranking Points Documentation External Word count
Points 1 ρ = 0.879 + ρ = 0.976 ∗ ρ= -0.534
Documentation ρ= 0.879 + 1 ρ = 0.915 ∗ ρ= -0.612
External ρ= 0.976 ∗ ρ = 0.915 ∗ 1 ρ= -0.588
Word count ρ=-0.534 ρ =-0.612 ρ =-0.588 1

a) Internal Validity: In this experiment, the participants
form the largest treat to internal validity. Familiarity is a
potential influencing factor: some of the participants are more
familiar with the research than others. All of the participating
architects were interviewed in an earlier stage of the research
on how they document design rationale. The experiment was
split in several sessions, as not all architects could participate
at the same time. Therefore, all participants were given the
same elaborate introduction to ensure all participants have
equal knowledge before going into the experiment. Still, each
architect is different and has different levels of knowledge
about the architecture tool used in the experiment. Therefore,

Table VI
WILCOXON SIGNED RANK TEST. ELEMENTS MARKED WITH ∗∗ HAVE

SIGNIFICANCE p < 0.001.

Variable Test statistic Z Exact p-value
Points 2.505 0.006∗∗
Documentation 2.555 0.004∗∗
External 2.505 0.006∗∗

we controlled as many factors as possible to create equal
groups.

An influencing factor with respect to the quality of the
rankings is the familiarity of the participants with each other.
As all architects have the same affiliation, it can well be
possible that architects know each others’ way of writing,
style and output habits of the participants they have to rank.
As there is no way to control this, each architect had to
rank 3 solutions. Additionally, the ranking and integrity of the
architects was constantly emphasized: architects are supposed
to rank solutions rather than individuals. This premise was
emphasized by the researchers both during the experiment and
in the instructions for the ranking.

b) External Validity: All architects that participated in
this experiment work at the same organization. Furthermore,
a population of only 10 architects is limited. For that reason,
generalizing the results is difficult. Still, our findings point in
the same direction as other researchers found in the domain
of Software Architecture [13]–[15], [25], that all pointed out
that some external stimulus such as checklists or prompting



can help designers to reason more, and that more reasoning
can have a positive impact on the quality [16].

c) Reliability: Rankings created by people are subjective
by nature. Therefore, we studied and compared multiple
rankings, and to which extent these rankings agree. The high
correlations (¿.9) between the three independent variables
points, external expert ranking and documentation frequency
show reliability to be quite high.

VI. CONCLUSIONS

Many practicioners acknowledge the need for documenting
design rationale, yet experience a lack of tool support [5].
Recent studies show that simple means can help in providing
more rationale, such as a cardgame [14], checklists [15], or
an external observer [13]. However, architecture frameworks
and language have little to no support for capturing design
rationale.

In this paper, we studied the effect of design rationale to
enterprise architecture documentation on design quality. We
propose the Rationale Capture Cycle to support architects in
their reasoning process. The idea of the method is that it is
non-intrusive, i.e., that it does not hamper architects in their
design process.

To measure the effectiveness of the proposed method, we
performed a controlled experiment. Ten experienced architects
participated by creating an architecture for a specifically
designed case. Half of the architects received the method
as treatment, the other half did not. Through three different
measures we evaluated the design quality: partial rankings
based on points by the architects themselves, by coding
the rationale the architects documented, and by an external
architect.

The results of our experiment show a large agreement
between the different rankings. From the results, we may
conclude that solutions with more rationale are significantly
higher ranked in all three rankings, and that architects
using the method perform significantly better, confirming
our initial research question that the RCC is an effective
method. At the same time, the experiment shows that the par-
ticipants do not take significantly more time to produce the
architecture, countering the general believe that documenting
rationale is too expensive in time and/or budget [5].

Although the results look promising, the experiment shows
that not all architects fully utilized the RCC. As a conse-
quence, the results are smaller than they could have been.
Only 2 architects made full use of the cycle, causing a large
difference in the comparison. Further research into how such
a model can be fully implemented during architecture design
is needed. We believe that with more research into actively
embedding the reasoning model in architecture frameworks,
further improvements can be made.

REFERENCES

[1] ISO/IEC/IEEE, “Standard 42010 - Systems and software engineering —
Architecture description,” ISO/IEC/IEEE, Tech. Rep., 2011. [Online].
Available: http://www.iso-architecture.org/ieee-1471/

[2] A. Jansen and J. Bosch, “Software architecture as a set of architec-
tural design decisions,” in Working IEEE/IFIP Conference on Software
Architecture. IEEE, 2005, pp. 109–120.

[3] E. Poort, “RCDA: Risk- and cost-driven architecture: A solution archi-
tect’s handbook,” CGI Netherlands B.V., Tech. Rep., 2014.

[4] H. W. J. Rittel and M. M. Webber, “Dilemnas in a general theory of
planning,” Policy Sci., vol. 4, pp. 155–168, 1973.

[5] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of
architecture design rationale,” Journal of Systems and Software,
vol. 79, no. 12, pp. 1792–1804, 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2006.04.029

[6] D. Perry and A. Wolf, “Foundations for the study of software architec-
ture,” ACM SIGSOFT Sofware Engineering Notes, vol. 17, no. 4, pp.
40–52, 1992.

[7] J. Conklin and M. Begeman, “gIBIS: a hypertext tool for exploratory
policy discussion,” in Proceedings of the 1988 ACM conference on
Computer-supported cooperative work. ACM, 1988, pp. 140–152.

[8] A. MacLean, R. Young, V. Bellotti, and T. Moran, “Questions, options,
and criteria: Elements of design space analysis,” Human-Computer
Interaction, vol. 6, no. 3-4, pp. 201–250, 1991.

[9] W. Regli, X. Hu, M. Atwood, and W. Sun, “A survey of design
rationale systems: Approaches, representations, capture and retrieval,”
Engineering with Computers, vol. 16, no. 3-4, pp. 209–235, 2000.

[10] J. Verries, A. Sahraoui, and M. Paludetto, “Design rationale in system
design,” in International Conference on Systems Engineering, 2008, pp.
380–385.

[11] T. O. Group, he Open Group Architecture Framework Version 9.1. The
Open Group, 2011.

[12] J. Leite, F. Oquendo, and T. Batista, “Sysadl: A sysml profile for
software architecture description,” in European Conference on Software
Architecture, ser. LNCS, vol. 7957. Springer, Berlin, 2013.

[13] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: how
reflections influence software design thinking,” Journal of Software:
Evolution and Process, vol. 28, pp. 394–426, 2016.

[14] C. Schriek, J. M. E. M. van der Werf, A. Tang, and F. Bex, “Software
architecture design reasoning: A card game to help novice designers,” in
European Conference on Software Architecture, ser. LNCS, vol. 9839.
Springer, Berlin, 2016, pp. 22–38.

[15] M. Keil, L. Li, L. Mathiassen, and G. Zheng, “The influence of checklists
and roles on software practitioner risk perception and decision-making,”
Journal of Systems and Software, vol. 81, pp. 908–919, 2008.

[16] A. Tang, M. Tran, J. Han, and H. Vliet, “Design reasoning improves
software design quality,” in Quality of Software Architectures, ser.
LNCS, vol. 5581. Springer, Berlin, 2008, pp. 28–42.

[17] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management Information Systems, vol. 24, no. 3, pp. 45–77,
2007.

[18] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnel, and A. Wesslén,
Experimentation in Software Engineering. Springer, Berlin, 2012.

[19] R. Deneckère, C. Hug, J. Onderstal, and S. Brinkkemper, “Method
association approach: situational construction and evaluation of an
implementation method for software products,” in Research challenges
in information science. IEEE, 2015, pp. 274–285.

[20] A. Tang, “Software designers, are you biased?” in Workshop on SHAring
and Reusing Architectural Knowledge. ACM, 2011, pp. 1–8.

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison Wesley, Reading, MA, USA, 2012.

[22] R. McCall, Critical Conversations: Feedback as a Stimulus to Creativity
in Software Design. Springer, Berlin, 2013, pp. 11–40.

[23] J. Lee, “Design rationale systems: Understanding the issues,” IEEE
Expert. Syst. their Appl., vol. 12, pp. 78—-85, 1997.

[24] J. Burge and D. Brown, Design Rationale Types and Tools. AI in
Design Group, 1998.

[25] U. Heesch, P. Avgeriou, and A. Tang, “Does decision documentation
help junior designers rationalize their decisions? a comparative multiple-
case study,” Journal of Systems and Software, vol. 86, pp. 1545––1565,
2013.


