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we consider additional types of information such as abstractions which

allow domain experts to be more expressive in stating their knowledge,

where we identify and impose constraints on the types of inferences that

may be performed with the different types of information. A new notion

of attack is defined that captures a crucial aspect of abductive reason-

ing, namely that of competition between abductively inferred alterna-

tive explanations. Our argumentation formalism generates an abstract

argumentation framework and thus allows arguments to be formally

evaluated. We prove that instantiations of our argumentation formalism

satisfy key rationality postulates.
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1. Introduction

In the legal and forensic domains, reasoning about evidence plays a central role in the rational process

of proof [2,5]. To aid in this process, various graph-based tools exist that allow domain experts to

make sense of a mass of evidence in a case, such as mind maps [24,36], argument diagrams [4,24] and

Wigmore charts [40]. Because of their informal nature, these tools typically do not directly allow for

formal evaluation using AI techniques such as computational argumentation [14]. Hence, we wish5

to formalise and disambiguate analyses performed using such tools in a manner that (1) allows for

formal evaluation and that (2) adheres to principles from the literature on reasoning about evidence

[2,5,18,26], while (3) allowing inference to be performed and visualised in a manner that is closely

related to the way inference is performed and visualised by domain experts using such tools.

As we described in previous work [39], principles from the literature on reasoning about evidence10

state that inference is often performed using domain-specific generalisations [2,4,5], also called de-

faults [26,33], which capture knowledge about the world in conditional form. A distinction can be

made between causal generalisations (e.g. ‘fire typically causes smoke’ ) and evidential generalisa-

tions (e.g. ‘smoke is evidence for fire’ ) [5,26]. In the current paper, we also consider generalisations

that are neither causal nor evidential; examples are abstractions [5,13] and mere statistical corre-15

lations. Inference can be performed in a deductive or forward fashion, where from a generalisation

(e.g. ‘fire typically causes smoke’ ) and its antecedent (fire), the consequent (smoke) is strictly or

defeasibly inferred, and in an abductive [13,18] or backward fashion, where from a causal generalisa-

tion or an abstraction and by affirming the consequent (smoke), the antecedent (fire) is defeasibly

inferred. Note that the term ‘deduction’ is not consistently used in the literature, as it can either20

mean strict inference, in which the consequent universally holds given the antecedents (e.g. [21])

or defeasible inference, in which the consequent tentatively holds given the antecedents (e.g. [34]).

To cover both meanings, in this paper ‘deduction’ is used as an umbrella term for both defeasible

‘forward’ inference and strict ‘forward’ inference.

Pearl [26, p. 264] argued that people generally consider it difficult to express knowledge using25

only causal generalisations, and in an empirical study, van den Braak and colleagues [9] found that

while there are situations in which subjects consistently choose either causal or evidential modelling

techniques, there are also many examples in which people use both types of generalisations in their

reasoning. For instance, subjects often considered testimonies to be evidential, whereas a motive for

committing an act is considered a cause for committing that act. This discussion illustrates that30

in formal accounts of reasoning about evidence, it is important to allow for causal and evidential

generalisations [5]. Moreover, in this paper we show that it is important to also allow for abstractions

and other types of generalisations, as these allow domain experts to be more expressive in stating
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their knowledge. The need for including these types of generalisations will become apparent from

the examples we consider and the conceptional analysis of reasoning about evidence we provide.35

When performing analyses using aforementioned tools such as mind maps, domain experts nat-

urally mix the different types of generalisations and perform both deductive and abductive infer-

ences, where the used generalisations and the inference type (deduction, abduction) are typically

left implicit. Hence, in previous work [39] we set out to formalise analyses performed using these

tools by providing a precise account of the interplay between the different types of inferences and40

generalisations and the constraints on performing inference we need to impose in terms of the infor-

mation graph (IG) formalism. In this paper, we propose an extension of the IG-formalism, where in

addition to causal and evidential generalisations we now also allow for abstractions and introduce a

category of generalisations termed ‘other’, consisting of generalisations that are neither causal nor

evidential nor abstraction such as aforementioned mere correlations, thereby increasing the expres-45

sivity of the IG-formalism. We particularly focus on identifying conditions under which performing

inference with abstractions can lead to undesirable results. Specifically, care should be taken that

no version of an event at a lower level of abstraction is inferred if an alternative version of this event

at a lower level of abstraction was already previously inferred. Hence, we extend on the constraints

imposed by Pearl’s C-E system [26] which say that, in performing inference, care should be taken50

that no cause for an effect is inferred in case an alternative cause for this effect was already pre-

viously inferred. Moreover, in this paper we also consider exceptional circumstances under which

the constraints of Pearl’s C-E system should not be imposed, namely in case enabling conditions

[12] are provided under which a generalisation may be used in performing inference. Based on these

constraints and our conceptional analysis of reasoning about evidence, we define how deductive and55

abductive inference may be performed with IGs. Most existing formalisms that allow both inference

types with causal and evidential information, abstractions, and other types of information are logic-

based (e.g. [5,6,13,21]); instead, we opt for a graph-based formalism to remain closely related to the

way analyses are visualised using aforementioned graph-based tools.

The information specified in an IG serves as a source of information that can be used to facilitate60

the construction of AI systems for which formal semantics are defined. In earlier work [39], we

investigated the application of our IG-formalism in facilitating the construction of Bayesian networks

(BNs) [17], graphical models of joint probability distributions. In this paper, we instead focus on

argumentation, where we propose an argumentation formalism based on IGs that allows for both

deductive and abductive argumentation [38]. Previous work on abduction includes work on formal65

logical models of abductive reasoning (e.g. [13,18]) and the work of Kakas and colleagues on abductive

logic programming [20]. However, to the best of our knowledge, our proposed formalism is one of
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the first formalisms that models combined abductive and deductive reasoning in a formalism for

structured argumentation. The closest to the current paper is the integrated theory of causal and

evidential arguments [6], which is based on the ASPIC+ framework [21]. In the integrated theory,70

the roles of generalisation and inference are not separated; instead, causal and evidential inferences

are defined and arguments are constructed by forward chaining such inferences. Actual abduction

is thus not performed by constructing arguments. Moreover, in contrast with [6] we put special

emphasis on the constraints on performing inference that need to be imposed in the current paper,

where we formally prove that arguments based on IGs indeed adhere to the identified constraints.75

Finally, compared to the ASPIC+ framework [21], which only allows for deductive reasoning, we

allow for both deductive and abductive reasoning and introduce a new type of conflict, namely

conflict between competing alternative explanations [18], which is currently not accounted for in

that framework. Other related formalisms are discussed in Section 6.

Our argumentation formalism generates an abstract argumentation framework as in Dung [14],80

that is, a set of arguments with a binary attack relation, which thus allows arguments to be formally

evaluated according to Dung’s argumentation semantics. Besides allowing for rebuttal and under-

cutting attack, which are among the types of attacks that are typically distinguished in structured

argumentation [21,28], we also define the notion of alternative attack among arguments based on

IGs, a concept based on the notion of competing alternative explanations that is inspired by [3,6].85

Alternative attack captures a crucial aspect of abductive reasoning, namely that of conflict between

abductively inferred conclusions [18].

Our argumentation formalism extends a preliminary version proposed in [38] that was based on

a more restricted version of our IG-formalism [39] in which only causal and evidential generalisations

without enablers were considered. Moreover, in comparison to our earlier work [38] we now also prove90

that key rationality postulates [10] are satisfied by instantiations of our formalism, which implies

that anomalous results as identified by [10] are avoided.

To summarise the main contributions of this paper, we propose an argumentation formalism that

allows for both deductive and abductive argumentation, the latter of which has received relatively

little attention in argumentation. Our argumentation formalism is based on an extended version95

of our IG-formalism, where in addition to causal and evidential generalisations we now also allow

for abstractions and other types of generalisations, as well as generalisations including enabling

conditions, where constraints are imposed on the types of inferences that may be performed with

these new types of generalisations. A new notion of attack is defined, namely alternative attack.

Our approach allows arguments to be evaluated using Dung’s semantics. We formally prove that100

instantiations of our argumentation formalism satisfy key rationality postulates [10].
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The paper is structured as follows. In Section 2 we provide a conceptual analysis of reasoning

about evidence. In Section 3 we present examples of analyses performed using informal reasoning

tools typically used by domain experts, namely Wigmore charts and mind maps, which illustrates

that both deductive and abductive inference is performed by domain experts using both causal and105

evidential generalisations, abstractions, and other types of generalisations. Based on these examples,

in Section 4 we motivate and define our IG-formalism. In Section 5 we then define our argumentation

formalism based on our IG-formalism and prove formal properties of our approach. In Section 6 we

discuss related work. In Section 7 we summarise our findings and conclude.

2. Reasoning about evidence110

In this section, we provide a conceptual analysis of reasoning about evidence, where we review the

terminology used to describe it and introduce assumptions that demarcate the scope of the work

presented in this paper. This analysis extends the analysis provided in our previous work [39] in which

only causal and evidential generalisations without enablers were considered. More specifically, we

now also consider abstractions and other types of generalisations, as well as generalisations including115

enabling conditions. The concepts and assumptions introduced in this section are formalised in

Sections 4 and 5.

Inference is the process of drawing conclusions from premises starting from the evidence, where

evidence is that what has been established with certainty in the context under consideration. For

instance, in the context of a legal trial, the evidence consists of that what is actually observed by120

a judge or jury, such as documents and other tangible evidence, as well as testimonial evidence

[2]. Inference is often performed using domain-specific generalisations [2,4,5], also called defaults

[26,33], which capture knowledge about the world in conditional form. Generalisations can either

be strict or defeasible, where defeasible generalisations are of the form ‘If a1, . . . , an, then usu-

ally/normally/typically b’ and strict generalisations are of the form ‘If a1, . . . , an, then always b’.125

Here, claims a1, . . . , an are called the antecedents of the generalisation and b its consequent, where

we assume that claims are literal propositions and that generalisations have one or more antecedents

and exactly one consequent. In case a generalisation has multiple antecedents, it expresses that only

the antecedents together allow us to infer the consequent. We semi-formally denote generalisations

as a1, . . . , an → b, among others to ease the description of examples in this section and in Section130

3. For defeasible generalisations, exceptional circumstances can be provided under which the gen-

eralisation may not hold, whereas strict generalisations hold without exception. An example of a

(defeasible) generalisation is ‘If fire, then typically smoke’, where ‘fire’ is its antecedent and ‘smoke’
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its consequent. An example of an exception to this generalisation is that sufficient oxygen is present

for complete combustion to occur.135

A distinction can be made between causal and evidential generalisations [5,26], where instead

of writing these generalisations in the form ‘If . . . , then . . . ’, causal generalisations are written as

‘c1, . . . , cn usually/normally/typically cause e’ (e.g. ‘fire typically causes smoke’ ) and evidential gen-

eralisations are written as ‘e1, . . . , en are evidence for c’ (e.g. ‘smoke is evidence for fire’ ). For a

causal generalisation, its antecedents express causes for the consequent, and for an evidential gener-140

alisation, its consequent expresses the usual cause for its antecedents. In the context of commonsense

reasoning about evidence, causal and evidential generalisations are often assumed to be defeasible

(see e.g. [5,19]); in this paper, this assumption is also made. The examples considered throughout

this paper illustrate that causal and evidential generalisations are typically not strict2.

In this paper, we also consider generalisations that are neither causal nor evidential. For instance,145

abstractions [5,13] allow for reasoning at different levels of abstraction. More precisely, abstractions

are of the form ‘p1, . . . , pn can usually/normally/typically/always be considered a specialisation of q’

(e.g. guns can usually be considered deadly weapons), where antecedents p1, . . . , pn are considered

to be more specific than the more abstract consequent q. As noted by Console and Dupré [13],

abstractions are syntactically the same as causal generalisations but they are semantically different150

in that the antecedents of abstractions do not express causes for the consequent or vice versa.

Abstractions may be defeasible (cf. [5]) but may also be strict (cf. [13]); an example of a strict

abstraction is generalisation lung cancer →a cancer, which states that lung cancer is a type of cancer.

An example of defeasible abstraction is gun →a deadly weapon, where an example of an exception

to this generalisation is that the gun is a non-functional replica, or a water gun.155

Another example of a different type of generalisation is a generalisation representing a mere sta-

tistical correlation, such as a correlation between homelessness and criminality. While there may be

one or more confounding factors that cause both homelessness and criminality (e.g. unemployment),

a domain expert may be unaware of these factors or may wish to refrain from expressing them explic-

itly. In this paper, we distinguish between generalisations that are causal, evidential, abstractions, or160

of another type, where generalisations of type ‘other’ may be defeasible or strict. Specifically, as this

category contains all possible types of generalisations other than causal, evidential and abstraction,

we allow for the option to distinguish between strict and defeasible generalisations among these

generalisations. Table 1 provides an overview of the different generalisation types, where for each

type it is indicated whether generalisations may be defeasible or strict. The notation →c, →e, →a165

2Note that strict generalisations such as strict rules from classical logic and definitions can be expressed using strict

generalisations of type ‘other’ and strict abstractions.
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Table 1. Table indicating for each generalisation type whether generalisations may be defeasible

or strict.

 Causal 
generalisations  

Evidential 
generalisations 

Abstractions Other 
generalisations 

Defeasible V V V V 
Strict X X V V 

 

and →o is used for the different types of generalisations, respectively.

Different types of inferences can be performed with generalisations depending on whether their

antecendents or consequent are affirmed in that they are either observed or inferred; here, a claim

is inferred iff it is either deductively or abductively inferred, where in deductive inference the conse-

quent is inferred from the antecedents and in abductive inference the antecendents are inferred from170

the consequent. These two inference types are now considered in more detail.

2.1. Deductive inference

Inference can be performed in a deductive fashion, where from a generalisation and by affirming

the antecedents, the consequent is inferred by modus ponens on the generalisation. As noted in

the introduction, the term ‘deduction’ is used for both defeasible and strict ‘forward’ inference;175

hence, deduction is not necessarily a stronger or more reliable form of inference than abduction,

which is a type of defeasible inference. Defeasible deduction can only be performed using defeasible

generalisations (of any type) and not using strict generalisations (see Table 2). Strict deductive

inference can only be performed using strict abstractions and strict generalisations of type ‘other’.

For a given instance of deductive inference, it will be explicitly specified whether it concerns strict180

or defeasible deductive inference.

Example 1. Consider causal generalisation g : fire →c smoke. By affirming g’s antecedent fire, its

consequent smoke is defeasibly deductively inferred. �

The following example illustrates strict deductive inference.

Example 2. Consider strict abstraction g : lung cancer →a cancer. Upon observing that a person185

has lung cancer, we can strictly deductively infer that the person has cancer using g. �

Prediction [34] is a specific type of deductive inference in which the consequent of a causal

generalisation is deductively inferred by affirming its antecedents. Specifically, as the antecedents

of a causal generalisation express causes for the consequent, the consequent is said to be predicted

from the antecedents in this case. Example 1 provides an example of prediction.190
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Table 2. Table indicating for defeasible and strict generalisations of every generalisation type which types of inferences

may be performed.

 

 Causal 
generalisations 

Evidential 
generalisations 

Defeasible 
abstractions 

Strict 
abstractions  

Defeasible 
other 
generalisations 

Strict  
other 
generalisations 

Defeasible 
deduction 

V V V X V X 

Strict 
deduction 

X X X V X V 

Abduction V X V V X X 

2.2. Abductive inference

Abduction [13,18], a type of defeasible inference, can be performed using causal generalisations

and abstractions: from a causal generalisation or an abstraction and by affirming the consequent,

the antecedents are inferred, since if the antecedents are true it would allow us to deductively

infer the consequent modus-ponens-style. Following [18], in case causes c1, . . . , cn and c′1, . . . , c
′
m195

are abductively inferred from common effect e using causal generalisations g1 : c1, . . . , cn →c e and

g2 : c′1, . . . , c
′
m →c e, then ci and c′j for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, ci 6= c′j are considered to be

competing alternative explanations for e. We assume that causes ci (and c′j) are not in competition

among themselves.

Example 3. Consider the following causal generalisations:200

g1 : fire →c smoke;

g2 : smoke machine →c smoke.

By affirming the common consequent ( smoke), fire and smoke machine are abductively inferred,205

which are then competing alternative explanations of smoke. �

Abductive inference can also be performed using abstractions [5,13], where the used abstraction

can either be defeasible (cf. [5]) or strict (cf. [13]). An example of a model including strict abstrac-

tions is that of Console and Dupré [13], in which both explanatory axioms (comparable to causal

generalisations) and abstraction axioms are used to explain observations. Multiple explanations that210

are inferred using abstraction axioms can then be considered competing alternative explanations.

Note that an abductive inference step with a strict abstraction is still defeasible, as it concerns an

inference step from the more abstract consequent to a more specific antecedent. Following Console

and Dupré [13] and Bex [5], we allow for abductive inference using both strict and defeasible abstrac-

tions, where in performing abduction with abstractions g1 : p1, . . . , pn →a q and g2 : p′1, . . . , p
′
m →a q215
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the antecedents pi and p′j for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, ci 6= c′j are considered to be competing

alternative explanations of the common consequent q. We assume that antecedents pi (and p′j) are

not in competition among themselves.

Example 4. Consider the following defeasible abstractions:
220

g1 : gun →a deadly weapon;

g2 : knife →a deadly weapon.

By affirming the common consequent ( deadly weapon), gun and knife are abductively inferred using

generalisations g1 and g2, which are then competing alternative explanations of deadly weapon. �225

The following example illustrates abductive inference with strict abstractions.

Example 5. Consider the following strict abstractions:

g′1 : lung cancer →a cancer;

g′2 : colon cancer →a cancer.230

Upon observing that a person has cancer, lung cancer and colon cancer are abductively inferred,

which are then competing alternative explanations of cancer. �

2.3. Representing causal knowledge

Abductive inference with causal generalisations and deductive inference with evidential gen-235

eralisations are related: in some cases, we will accept not only causal generalisation ‘c usu-

ally/normally/typically causes e’ but also evidential generalisation ‘e is evidence for c’ [6,26], which

we will call the evidential counterpart of the causal generalisation. However, it can be argued that

we only accept the evidential counterpart of a causal generalisation if c is the usual cause of e, where

we assume that only one cause can be the usual cause of e.240

Example 6. Fire can be considered the usual cause of smoke, so we will accept both causal generali-

sation g : fire →c smoke and its evidential counterpart g′ : smoke →e fire. In this case, abduction

with generalisation g can be encoded as deduction with generalisation g′. Because a smoke machine

cannot be considered the usual cause of smoke, we will accept causal generalisation smoke machine

→c smoke but we will not accept evidential generalisation smoke →e smoke machine. �245

Note that a causal generalisation g can only have an evidential counterpart g′ in case g has a

single antecedent, as we assume generalisations have a single consequent but multiple antecedents.
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Furthermore, as we assume that only one cause can be the usual cause of e, only one of the causal

generalisations c1 →c e or c2 →c e can be replaced by an evidential generalisation. Hence, we do

not consider c1 and c2 to be competing alternative explanations of e in case deductive inference is250

performed using evidential generalisations e→e c1 and e→e c2.

2.4. Mixed inference and inference constraints

Deductive and abductive inference can be iteratively performed, where mixed abductive-deductive

inference is also possible.

Example 7. Suppose that from the causal generalisation g1 : fire →c smoke and by affirming its255

consequent ( smoke), its antecedent ( fire) is inferred. Now, if the additional causal generalisation

g2 : fire →c heat is provided, then its consequent ( heat) can be deductively inferred (or predicted)

as the antecedent ( fire) has been previously abductively inferred. �

2.4.1. Constraints on performing inference with causal and evidential generalisations

Mixed deductive inference, using both causal and evidential generalisations, can also be performed260

[6], but as noted by Pearl [26] care should be taken in performing mixed inference that no cause for

an effect is inferred in case an alternative cause for this effect was already previously inferred.

Example 8. Consider the example in which a causal generalisation g1 : smoke machine →c smoke

and an evidential generalisation g2 : smoke →e fire are provided. Deductively chaining these gen-

eralisations would make us infer that there is a fire when seeing a smoke machine, which is clearly265

undesirable. �

Similarly, in performing mixed deductive-abductive inference, care should be taken that no cause

for an effect is inferred in case an alternative cause for this effect was already previously inferred.

Example 9. Consider Example 8, where instead of an evidential generalisation g2 : smoke →e fire

a causal generalisation g2 : fire →c smoke is provided. Upon seeing a smoke machine, this would270

make us infer that there is a fire in case deduction and abduction are performed in sequence, which

is again undesirable. �

Accordingly, we wish to prohibit these types of inference patterns, and refer to the constraint

that no cause for an effect should be inferred in case an alternative cause for this effect was already

previously inferred as Pearl’s constraint [26].275

The above discussion can be extended to generalisations with multiple antecedents.
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Example 10. Suppose that the following generalisations are provided:

g1 : high body temperature →e fever;

g2 : smoke →c coughing;280

g3 : fever, coughing →e pneumonia.

Upon observing that a person has high body temperature and that there is smoke, this would make

us infer that the person has a fever and is coughing using generalisations g1 and g2, respectively.

In turn, this would make us infer that the person has pneumonia using generalisation g3, which is285

undesirable: as a cause for coughing was already previously inferred ( smoke), we should not be able

to infer a different cause for coughing ( pneumonia). Specifically, fever is in itself not a sufficient

condition for inferring pneumonia: coughing is also necessary. Only in case a separate evidential

generalisation g4 : fever →e pneumonia is provided should we be able to infer pneumonia. �

Similar problems arise in performing inference using causal generalisations with multiple an-290

tecedents. Accordingly, we wish to extend Pearl’s constraint to generalisations with multiple an-

tecedents. However, there are exceptions under which we do not wish to prohibit the afore-

mentioned types of inference patterns, namely in case additional circumstances, also called en-

abling conditions [12], or enablers, are provided under which a causal or evidential generalisation

may be used in performing inference. Generalisations including enablers are of the general form295

e1, . . . , em, a1, . . . , an → b, where e1, . . . , em are its enablers and a1, . . . , an its actual antecedents.

For a causal generalisation, only its actual antecedents and not its enablers express causes for the

consequent. Similarly, for an evidential generalisation its consequent only expresses the usual cause

for its actual antecedents and not for its enablers. Causality is a contentious topic, and it is easy to

disagree about whether an event is an actual cause or an enabler. Cheng and Novick [12] note that300

an event is typically viewed as an actual cause if it describes a situation that deviates from ‘normal’

circumstances. For instance, lighting a match is considered a cause of fire, but the presence of oxygen

is typically not consider a cause of fire as it is normal that oxygen is present. This is, however,

also context-dependent, and oxygen can be considered a cause of fire in situations where oxygen

is typically not present (e.g. in space). We note that generalisations capture knowledge about the305

world as perceived by the person stating the knowledge, and that the distinction between enablers

and actual causes allows domain experts to be more expressive in stating their knowledge.

The following example illustrates that deductively chaining a causal and an evidential generali-

sation does not lead to undesirable results for evidential generalisations including enablers.
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Example 11. Consider the example in which the following evidential generalisation is provided:310

g1 : fire, dry wood →e lightning strike.

Generalisation g1 states that from the presence of dry wood and fire we can conclude that there may

have been a lightning strike. In this case, dry wood is an enabler of the generalisation, and light-315

ning strike cannot be considered a cause for antecedent dry wood. Only in case fire was previously

deductively inferred using a causal generalisation (e.g. g2 : torch →c fire) should the application of

evidential generalisation g1 be blocked. However, in case dry wood was previously inferred using a

causal generalisation (e.g. g3 : warm summer →c dry wood) and fire is not inferred using a causal

generalisation, then we should be able to infer lightning strike using generalisation g1. �320

Similarly, inference may be performed using causal generalisations including enablers, but Pearl’s

constraint does not need to be reconsidered in this case as illustrated by the following example.

Example 12. Consider the example in which the following causal generalisations are provided:

g1 : torch →c fire;325

g2 : match, oxygen →c fire.

In this case, the presence of oxygen is an enabler of generalisation g2, as it cannot be considered an

actual cause of fire. Upon striking a match in the presence of oxygen, we can deductively infer that

there is a fire using generalisation g2. Similar to Example 9, we should now not be able to abductively330

infer torch using generalisation g1. Similarly, performing deduction and abduction in sequence using

generalisations g1 and g2 is undesirable. �

To summarise this section, we wish to prohibit (1) subsequent deductive inference using a causal

and an evidential generalisation in case the consequent of the causal generalisation is an actual

antecedent of the evidential generalisation and not an enabler, and (2) subsequent deductive and335

abductive inference using two causal generalisations with the same consequent. Note that, while

these constraints deviate from Pearl’s original constraints [26] as enabling conditions are now also

taken into account, we will refer to these constraints as Pearl’s constraint throughout this paper.

2.4.2. Constraints on performing inference with abstractions

When performing inference with abstractions, care should be taken that no version of an event at a340

lower level of abstraction is abductively inferred if an alternative version of this event at a lower level
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of abstraction was already previously inferred. In particular, performing deduction and abduction

in that order with two abstractions with the same consequent leads to undesirable results.

Example 13. Consider generalisations g1 : gun→a deadly weapon and g2 : knife→a deadly weapon

from Example 4. Upon observing that a provided object is a gun, this would make us deductively345

infer that this object is a deadly weapon using generalisation g1. Upon performing abduction with

g2, this would make us infer that the provided object is a knife, which is clearly undesirable. �

Performing abduction and deduction in that order with two abstractions with the same conse-

quent does not lead to undesirable results.

Example 14. Consider abstractions g2 : knife →a deadly weapon and g3 : knife →a metal object.350

Upon observing metal object, we can abductively infer knife using generalisation g3. In turn, claim

deadly weapon is deductively inferred using generalisation g2. �

The following example illustrates that mixed inference, using either a causal generalisation and

an abstraction or an evidential generalisation and an abstraction, does not lead to undesirable results.

Hence, no additional inference constraints need to be imposed.355

Example 15. Consider Example 5. Assume that in addition to strict abstractions g′1 : lung cancer

→a cancer and g′2 : colon cancer →a cancer, causal generalisation g′3 : smoking →c cancer is pro-

vided. Upon observing that a person smokes, we deductively infer that the person has cancer using

generalisation g′3. Using generalisations g′1 and g′2, we can then in turn abductively infer that the

person has either lung cancer or colon cancer, which are then competing alternative explanations of360

cancer (see Example 5). Note that it is not undesirable to infer lung cancer or colon cancer from

cancer in this case, as smoking and lung cancer ( colon cancer) are not alternative explanations of

cancer; instead, smoking is a cause of cancer, while lung cancer ( colon cancer) is not a cause of

cancer but instead describes claim cancer at a lower level of abstraction. Similar observations can

be made by replacing generalisation g′3 by generalisation g′4 : cancer →e smoking. �365

To summarise this section, we only wish to prohibit subsequent deduction and abduction using

two abstractions with the same consequent and not other inference patterns involving abstractions.

Finally, note that for generalisations of type ‘other’ no additional inference constraints are imposed.

2.5. Ambiguous inference

Situations may arise in practice in which both deduction and abduction can be performed with the370

same causal generalisation or abstraction; the inference type is, therefore, ambiguous.
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Example 16. Consider generalisation g1 : fire →c smoke. Suppose fire and smoke are not observed

but have been previously inferred, for instance via deduction using generalisations g2 : see fire →e

fire and g3 : see smoke →e smoke, where see fire and see smoke are provided as evidence. Then both

deduction and abduction can be performed with g1 to infer smoke from fire and fire from smoke. �375

Generally, we do not wish to prohibit this type of ambiguous inference patterns as we do not

consider them to be undesirable.

3. Examples of analyses performed using informal reasoning tools

In this section, we present examples of analyses performed using two tools that are typically used

by domain experts, namely Wigmore charts [40] and mind maps [24,36]. Based on these examples,380

we motivate and illustrate the design choices for our IG-formalism in Section 4.

3.1. Example of an analysis performed in a Wigmore chart

First, Wigmore charts are considered, which are diagrams familiar to legal experts in which symbols

indicating hypotheses and claims are joined by lines representing relations between these hypotheses

and claims. Wigmore charts were introduced by John Henry Wigmore [40] and were applied and385

further developed by Anderson, Schum, Twining and others (e.g. [2,19]), who provided a modernised,

more user-friendly version of Wigmore’s charting method. In this section, we consider these modern

versions of Wigmore charts, specifically the version adopted by Kadane and Schum [19]. In their

charts, each symbol represents a unique claim. As noted by Kadane and Schum [19, p. 88], arcs be-

tween nodes in the chart indicate inferences between corresponding claims, where the generalisations390

used in performing these inferences, as well as the inference type (deduction or abduction), are not

explicitly recorded in the chart. To be able to interpret whether inferences are deductive or abduc-

tive, and hence what the antecedents and consequents are of generalisations used in performing the

inferences, the evidence in the chart also needs to be considered.

Example 17. An example of a modern Wigmore chart, adapted from Kadane and Schum [19, pp. 330–395

331], is depicted in Figure 1, which also serves as our running example. The Wigmore chart concerns

part of an actual legal case, namely the well-known Sacco and Vanzetti case. The case concerns Sacco

and Vanzetti, who were convicted for shooting and killing payroll guard Berardelli during a robbery. In

this example, we only consider the part of the case concerning Sacco’s consciousness of guilt. During

their arrest, Sacco and Vanzetti were armed. According to the two arresting officers, Connolly and400

Spear, Sacco and Vanzetti made suspicious hand movements, from which the prosecution concluded
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistence of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during  
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

 
PROSECUTION

 DEFENCE

Figure 1. Wigmore chart concerning Sacco’s consciousness of guilt, along with the corresponding key list, adapted

from Kadane and Schum [19, pp. 330–331].

that they intended to draw their concealed weapons in order to escape their arrest. This suggests that

they were conscious of having committed a criminal act.

On the right-hand side of Figure 1 the corresponding key list is depicted, which indicates for every

number in the chart to which claim it corresponds. Claims provided by the defence and prosecution405

are represented as diamonds and circles in the chart, respectively, where nodes corresponding to the

evidence are shaded. Finally, horizontal lines in the Wigmore chart indicate that information needs

to be combined to draw a conclusion. �

As noted earlier, the generalisations used in performing the indicated inferences are left implicit

in the chart. Instead, in their analysis of the case some of the used generalisations are indicated410

in the text (see e.g. [19, pp. 97–98]). For instance, generalisations used in the inferences from the

testimonies are of the general form ‘If a person testifying under oath tells us that event E occurred,

then this event (probably, usually, often, etc,) did occur.’ [19, p. 88]. As noted by Kadane and Schum

[19, pp. 74–76], in constructing their charts abduction is in some instances performed to generate

interim hypotheses between the evidence and the ultimate claim Π3. However, Kadane and Schum415
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do not explicitly indicate which inferences in their charts are abductive and which are deductive.

Lastly, it is important to note that the manner in which claims and links conflict is not precisely

specified in Kadane and Schum’s Wigmore charts, as also observed by Bex and colleagues [4] in

formalising such Wigmore charts as Pollock-style arguments [28]. For instance, multiple interpreta-

tions of the conflicts between the defence’s claims 462 and 465 and the prosecution’s claims 152 and420

153 are possible. One possible interpretation is that 462 and 465 indicate support for the negation

of claim 153: as Sacco carried his weapon for an innocent reason (either 462 or 465), he intended

to surrender his weapon and, therefore, did not intend to use it. Alternatively, 462 and 465 can be

considered competing alternative explanations of 152, and hence be interpreted as exceptions to the

performed inference step from 152 to 153. Specifically, as Sacco carried his weapon for an innocent425

reason (462 or 465), this caused him to draw his weapon (152) with the intention of surrendering it.

3.2. Example of an analysis performed using a mind mapping tool

Next, we present an example of an analysis performed using a mind mapping tool [24], which is an

example of a tool typically used by domain experts, for instance in crime analysis [36]. A mind map

usually takes the shape of a diagram in which hypotheses and claims are represented by boxes and430

underlined text, and undirected edges symbolise relations between these hypotheses and claims. An

example is depicted in Figure 2, which is based on a standard template used by the Dutch police

for criminal cases involving the suspicious death of a person. The mind map represents various

scenario-elements and the crime analyst uses evidence to support or oppose these elements, indicated

in the mind map by plus and minus symbols, respectively. Compared to Wigmore charts, which435

offer a wide range of symbols and arcs to allow users to be expressive and precise in modelling

legal reasoning, mind maps are less precise and are used to obtain an overview of different possible

alternative scenarios. In the following example, only supporting evidence is considered, which allows

us to focus on the manner in which competing alternative explanations are captured in mind maps.

Example 18. An example of a partially filled in mind map is depicted in Figure 2. In this example440

case, a body was found; we are interested in the cause of death of this person. First, high-level

hypothesis ‘Murder’ is examined. According to witness testimony ( Testimony 1), the person was hit

with a hammer ( Hammer); however, according to another testimony ( Testimony 2), the person was

hit with a stone ( Stone). By means of plus symbols and undirected edges connecting the evidence to

these claims, it is indicated that claims Testimony 1 and Testimony 2 support claims Hammer and445

Stone, respectively. Hammer and Stone are connected via undirected edges to Hit angular, which

indicates that hammers and stones can generally be considered to be angular. In turn, claim Hit

angular is connected to the ‘With’ question to indicate that it provides an answer to this question.
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Example 
Case

Murder

With

Where

When

What

Who

Hit angular
Hammer

Stone

       Testimony 1

In which wayHead wound

       Autopsy

      Hit angular

Accident

Head wound

       Autopsy

Fell on table         Testimony 3

In which way

Who

What

When

Where

With

Why Why
       Testimony 2

Figure 2. Example of a partially filled in mind map.

As an answer to the ‘In which way’ question, it is indicated that the person died because of a head

wound ( Head wound), which is again supported by the claim that the person was hit with an angular450

object ( Hit angular). An autopsy report ( Autopsy) further supports claim Head wound.

Next, high-level hypothesis ‘Accident’ is examined, which provides a competing alternative ex-

planation of Head wound. As an answer to the ‘In which way’ question, it is again indicated that

the person died because of a head wound and that this claim is supported by Autopsy; however, in

contrast to the answer to this question for the high-level hypothesis ‘Murder’, it is indicated that455

the head wound was caused because the person fell on a table by accident ( Fell on table), a claim

supported by further testimony ( Testimony 3). �

As the edges in a mind map are undirected, it is unclear from the graphical representation alone

which types of generalisations and inferences were used in constructing this map. Establishing this

with certainty would require directly consulting the domain experts involved in constructing the460

chart. We note, however, that the reasoning performed in constructing this mind map can be inter-

preted in at least two possible ways. One interpretation is that the domain expert first (preliminarily)

inferred that the person died because of a head wound from the autopsy report via deductive infer-

ence using the evidential generalisation g1 : Autopsy →e Head wound, and then abductively inferred

Hit angular using the causal generalisation g2 : Hit angular →c Head wound. In turn, Hammer and465

Stone are abductively inferred from Hit angular using the abstractions g3 : Hammer →a Hit angu-

lar and g4 : Stone →a Hit angular. These two claims are then competing alternative explanations

of Hit angular and are subsequently grounded in evidence, namely via deductive inference from

the testimonies using evidential generalisations g5 : Testimony 1 →e Hammer and g6 : Testimony

2 →e Stone. An alternative interpretation is that the mind map was constructed iteratively from470

the evidence, where from the testimonies the claims Hammer and Stone are inferred via deductive

inference using generalisations g5 and g6. Claim Hit angular is then inferred modus-ponens style:

from abstractions g3 and g4 and the previously inferred antecedents, the consequent is deductively

inferred. In this way, Hammer and Stone are not in competition for Hit angular.
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This example illustrates that the types of generalisations and inferences involved in the analysis475

of a case using a mind mapping tool are typically left implicit. Similarly, the manner in which claims

and links conflict is not precisely specified in mind maps: in particular, conflicts between competing

alternative explanations are not explicitly indicated in the graph.

4. The information graph formalism

The examples from Section 3 make it plausible that both deductive and abductive inference is per-480

formed by domain experts when performing analyses using reasoning tools they are familiar with. In

performing such analyses, the used generalisation, as well as the inference type (deduction, abduc-

tion), are left implicit. Furthermore, the assumptions of domain experts underlying their analyses are

typically not explicitly stated, making these analyses ambiguous to interpret. For current purposes,

we wish to provide a precise account of the interplay between the different types of inferences and485

generalisations that formalises and disambiguates these analyses in a manner that makes the used

generalisations explicit. Information graphs (IGs), which we define in Section 4.1, are knowledge

representations that explicitly describe generalisations in the graph. In constructing an IG from an

analysis performed using a tool, an interpretation step may be required; we provide examples of this

interpretation step by discussing possible formalisations of the Wigmore chart of Section 3.1 and490

the mind map of Section 3.2. In Section 4.2, we define how deductive and abductive inferences can

be read from IGs given the evidence, based on our conceptual analysis of reasoning about evidence

(Section 2). Compared to our previously proposed IG-formalism [39] in which only causal and evi-

dential generalisations were considered, abstractions and other types of generalisations are now also

considered, as well as generalisations including enabling conditions, where constraints are imposed495

on the types of inferences that may be performed with these new types of generalisations.

4.1. Information graphs

First, the syntax of IGs is defined. Throughout this paper, boldface is used to indicate sets used in

the IG-formalism.

Definition 1 (Information graph). An information graph (IG) is a directed graph GI = (P,A),500

where P is a set of nodes representing propositions from a propositional language consisting of only

literals and that is closed under classical negation, where the negation symbol is denoted by ¬. A is

a set of (hyper)arcs that divides into three pairwise disjoint subsets G, N and X of generalisation

arcs, negation arcs and exception arcs, defined in Definitions 2, 4, and 5, respectively.
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For IGs, there is a one-to-one correspondence between nodes and propositions, generalisation505

arcs and generalisations, exception arcs and exceptions, and negation arcs and negations. Through-

out this paper, in the context of IGs, the terms ‘node’ and ‘proposition’, ‘generalisation arc’ and

‘generalisation’, ‘exception arc’ and ‘exception’, and ‘negation arc’ and ‘negation’ are therefore used

interchangeably. We write p = −q in case p = ¬q or q = ¬p. Finally, note that while we currently

only consider classical negation, our IG-formalism may be extended in future work to allow for more510

general notions of conflicts such as contrariness (cf. [21]).

Definition 2 (Generalisation arc). Let GI = (P,A) be an IG. A generalisation arc g ∈ G ⊆ A

is a directed (hyper)arc g : {p1, . . . , pn} → p, indicating a generalisation with antecedents P1 =

{p1, . . . , pn} ⊆ P and consequent p ∈ P \ P1. Here, propositions in P1 are called the tails of g,

denoted by Tails(g), and p is called the head of g, denoted by Head(g). G divides into four pairwise515

disjoint subsets Gc, Ge, Ga and Go of causal generalisation arcs, evidential generalisation arcs,

abstraction arcs, and all other types of generalisation arcs, respectively. Generalisations in Gc and

Ge are defeasible, Ga divides into disjoint subsets Ga
s and Ga

d of strict and defeasible abstraction

arcs, respectively, and Go divides into disjoint subsets Go
s and Go

d of strict and defeasible other types

of generalisation arcs, respectively. For g ∈ G, Tails(g) divides into disjoint subsets Enabler(g) and520

Ant(g) of propositions representing enabling conditions and actual antecedents of the generalisation,

respectively, where for g ∈ Gc ∪Ge it holds that Ant(g) 6= ∅ and possibly Enabler(g) = ∅, and for

g ∈ Ga ∪Go it holds that Enabler(g) = ∅ (i.e. Tails(g) = Ant(g)).

Curly brackets are omitted in case |Tails(g)| = 1. In figures in this paper, generalisation arcs are

denoted by solid (hyper)arcs, which are labelled ‘c’ for g ∈ Gc, ‘e’ for g ∈ Ge, and ‘a’ for g ∈ Ga,525

where ‘o’ labels for g ∈ Go are omitted.

In accordance with our assumptions stated in Section 2, causal and evidential generalisations are

defeasible and can include enabling conditions. Abstractions and other types of generalisations can

either be strict or defeasible. A causal generalisation g : c→ e may have an evidential counterpart of

the form g′ : e→ c (see Section 2.3), but only if c is the usual cause of e. Definition 2 does not prohibit530

the coexistence of a causal generalisation g : c → e and its evidential counterpart g′ : e → c in an

IG, and inferences can be read from IGs including both generalisations without yielding anomalous

results; hence, both generalisations may be included if this is considered desirable. However, it should

be noted that g and g′ represent the same knowledge, and that care should be taken in for instance

modelling exceptions to generalisations (see Definition 5), as an exception to g can also be considered535

an exception to g′. Ultimately, it is the responsibility of the knowledge engineer in consultation with

the domain expert to decide which knowledge to include in the IG and to ensure this knowledge is
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correctly and consistently represented.

In the following example, the Wigmore chart of Section 3.1 is modelled as an IG.

Example 19. In Figure 3, an IG is depicted for a possible interpretation of the Wigmore chart540

of Figure 1. This interpretation is based on a previous interpretation of this Wigmore chart as a

preliminary version of an IG in which only causal and evidential information is considered and the

roles of generalisation and inference are not separated [37]. For every claim p in the Wigmore chart,

a proposition node p is included in P. As noted by Kadane and Schum [19, p. 88], the generalisations
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistence of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during  
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

 
PROSECUTION

 DEFENCE

Figure 3. An IG corresponding to a possible interpretation of the Wigmore chart of Figure 1, where ‘e’ labels denote

evidential generalisations, ‘c’ labels denote causal generalisations, ‘a’ labels denote abstractions,! is a negation arc

and is an exception arc.
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¬153

ee
g10 g11

g14
g15

Figure 4. Adjustment to part of the IG of Figure 3, where 462 and 465 indicate support for ¬153.
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used in the inferences from the testimonies are evidential. As propositions 150, 151, 463, 464, 466 and545

470 denote testimonies, the IG includes generalisation arcs g1 : {150, 151} → 149; g10 : {463, 464} →

462, g11 : 466 → 465 and g12 : 470 → 469 in Ge. Here, testimonies 150, 151 and 463, 464 are

combined in the antecedents of generalisations g1 and g10, respectively, as these sets of propositions

concern testimonies to the same claim. As 461 concerns Sacco’s testimony to denying 149, proposition

¬149 is included in P and generalisation arc g2 : 461→ ¬149 is included in Ge.550

Kadane and Schum do not indicate which (types of) generalisations were used in performing

the inferences between propositions 149 and Π3. We note that the inferences between 149 and 155

fit a so-called episode scheme for intentional actions [5, p. 64], in which someone’s psychological

state causes them to form certain goals, which in turn lead to actions that have consequences. In this

case, Sacco intended to escape from his arrest (154; goal) as he was conscious of having committed a555

criminal act (155; psychological state); therefore, we consider 155 a cause of 154. Sacco’s intention to

use his weapon (153) can then be considered a sub-goal of 154 and his intention to draw his concealed

weapon (152) a further sub-goal of 153. Sacco’s intention to draw his weapon (152) caused Sacco to

attempt to put his hand under his overcoat (149; action); therefore, we consider 152 a cause of 149.

The IG therefore includes generalisation arcs g3 : 149 → 152; g4 : 152 → 153; g5 : 153 → 154 and560

g6 : 154→ 155 in Ge to denote these generalisations.

Proposition 155 can be considered an abstraction of 155a: being involved in a robbery and shooting

can generally be considered committing a criminal act. The involved generalisation is defeasible:

involvement in a robbery and shooting does not imply that this involvement is of a criminal nature,

as it may also imply that the person under consideration is the victim. Proposition 155a can be565

considered a strict abstraction of 156, as at a higher level of abstraction being conscious of having been

involved in the specific robbery and shooting that took place in South Braintree can be considered being

conscious of having been involved in a robbery and shooting. Π3 can be considered a cause of 156;

more specifically, committing a specific robbery and shooting typically causes a person (in this case

Sacco) to be conscious of having been involved in this act. Therefore, generalisation g7 : 155a→ 155570

is included in Ga
d, g8 : 156→ 155a in Ga

s , and g9 : Π3 → 156 in Gc. Finally, from 469 (Sacco believed

he was being arrested because of his political beliefs), we can conclude that Sacco was not conscious

of having been involved in a robbery and shooting (¬155a). We consider the relation between 469 and

¬155a to be defeasible and neither causal nor evidential nor an abstraction, and therefore include

g13 : 469→ ¬155a in Go
d. �575

In the following example, the mind map of Section 3.2 is modelled as an IG.

Example 20. Consider Figure 5, which depicts an IG for a possible interpretation of the mind map of
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Figure 5. IG corresponding to a possible interpretation of the mind map of Figure 2.

Figure 2. The generalisations used in the inferences from the testimonies, as well as from autopsy,

are considered to be evidential; therefore, generalisation arcs g1, g2, g5 and g8 are included in Ge.

The relation between hammer ( stone) and hit angular is neither causal nor evidential; instead,580

generalisation arcs g3 and g4 are included in Ga
d to express that, at a higher level of abstraction,

both hammers and stones can generally be considered angular objects. These generalisations are

defeasible as not all hammers and stones are angular. Finally, hit angular and fell on table can both

be considered causes of head wound; therefore, generalisation arcs g6 and g7 are included in Gc.�

The following example illustrates generalisation arcs including enabling conditions.585

Example 21. Consider g′7 : {fell on table, no helmet} → head wound in Gc, which is an adjustment

to generalisation g7 of Example 20 which states that falling on a table causes a head wound in case

you are not wearing a helmet. As in Example 20, proposition fell on table expresses a cause for

head wound and hence, fell on table is included in Ant(g′7). Proposition no helmet does not express

a cause for head wound and can thus be considered an enabler of g′7; therefore, no helmet is included590

in Enabler(g′7). It should be noted that, while no helmet does not express a cause for the consequent,

it still is a necessary condition of generalisation g′7. �

Specific configurations of generalisation arcs express that two propositions are alternative expla-

nations of a common proposition, as captured by Definition 3. The terminology used is illustrated

in Figure 6.595

Definition 3 (Alternative explanations). Let GI = (P,A) be an IG. Then p1, p2 ∈ P are alternative

explanations of q ∈ P, as indicated by generalisations g and g′ in G, iff one of the following holds:

1. g ∈ Ge, Head(g) = p1, q ∈ Ant(g), and either:

1a) g′ ∈ Ge, g′ 6= g, Head(g′) = p2, q ∈ Ant(g′), or;

1b) g′ ∈ Gc, Head(g′) = q, p2 ∈ Ant(g′).600
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Figure 6. Illustration of the terminology used in Definition 3.

2. g ∈ Gc, Head(g) = q, p1 ∈ Ant(g), and either:

2a) g′ ∈ Gc, g′ 6= g, Head(g′) = q, p2 ∈ Ant(g′), or;

2b) g′ ∈ Ge, Head(g′) = p2, q ∈ Ant(g′).

3. g ∈ Ga, Head(g) = q, p1 ∈ Tails(g) and g′ ∈ Ga, g′ 6= g, Head(g′) = q, p2 ∈ Tails(g′).

Note that cases 1b and 2b are symmetrical in terms of p1 and p2 and the used generalisations;605

we opt to keep the distinction between these two cases as they simplify the proof of Proposition 1.

In case 1a, q is an actual antecedent and not an enabler of both g ∈ Ge and g′ ∈ Ge; hence, both

p1 and p2 are actual causes of q. Assuming that g and g′ both have multiple actual antecedents in

case 1a, then p1 and p2 are alternative explanations of every proposition q ∈ Ant(g) ∩ Ant(g′).

Hence, it is meaningful to define alternative explanations in the context in which generalisations610

have non-singleton sets of actual antecedents; this similarly holds for the other cases of Definition

3. In case 1b, p2 is an actual antecedent and not an enabler of g′ ∈ Gc and thus a cause of q, and

q is an actual antecedent and not an enabler of g ∈ Ge and thus p1 is a cause of q. In case 2a, p1

and p2 are actual antecedents of g ∈ Gc and g′ ∈ Gc, respectively; hence, both p1 and p2 are actual

causes of q. Finally, in case 3, p1 and p2 are antecedents of abstractions g ∈ Ga and g′ ∈ Ga with615

the same consequent q, and hence are considered alternative explanations of q.

Example 22. Consider the IG of Figure 5. According to condition 2a of Definition 3, hit angular and

fell on table are alternative explanations of head wound as indicated by generalisations g6 and g7.

Similarly, according to condition 3 of Definition 3, hammer and stone are alternative explanations

of hit angular as indicated by generalisations g3 and g4. �620

A negation arc captures a conflict between a proposition and its negation expressed in an IG.

Definition 4 (Negation arc). Let GI = (P,A) be an IG. A negation arc n ∈ N ⊆ A is a bidirectional

arc n : p! q in GI that exists between a pair p, q ∈ P iff q = −p.

Example 23. Consider the running example. As both 149 and ¬149 are included in the IG of Figure

3, negation arc n1 : 149! ¬149 is also included in the graph. Similarly, the IG of Figure 3 includes625

negation arc n2 : 155a! ¬155a. As noted in Section 3.1, one possible interpretation of the conflicts
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between propositions 462, 465 and 153 is that 462 and 465 indicate support for ¬153. Accordingly,

generalisations g14 : 462 → ¬153 and g15 : 465 → ¬153 can be included, as depicted in the adjusted

IG of Figure 4. As these generalisations are defeasible and neither causal nor evidential nor an

abstraction, g14 and g15 are included in Go
d. Negation arc n3 : 153! ¬153 is then included in N.630

An alternative interpretation of these conflicts is provided in Example 24. �

As defeasible generalisations do not hold universally, exceptional circumstances can be provided

under which such a generalisation may not hold; hence, we allow exceptions to defeasible generali-

sations to be specified in IGs by means of exception arcs.

Definition 5 (Exception arc). Let GI = (P,A) be an IG. An exception arc x ∈ X ⊆ A is a hyperarc635

x : p g, where p ∈ P is called an exception to defeasible generalisation g ∈ Gc ∪Ge ∪Ga
d ∪Go

d.

An exception arc directed from p to g indicates that p provides exceptional circumstances under

which g may not hold.

Example 24. Consider the running example. Instead of interpreting the conflicts between propositions

462, 465 and 153 as negations (see Example 23), an alternative interpretation is that 462 and 465640

indicate exceptions to generalisation g4 ∈ Ge. Specifically, 462 and 465 can be considered competing

alternative explanations of 152: as Sacco carried his weapon for an innocent reason (462 or 465),

this caused him to draw his weapon (152) with the intention of surrendering it. In Figure 3, these

exceptions are indicated by curved hyperarcs x1 : 462 g4 and x2 : 465 g4 in X. �

4.2. Reading inferences from information graphs645

We now define how deductive and abductive inferences can be performed with constructed IGs. By

itself, a generalisation arc only expresses that the tails together allow us to infer the head in case

this generalisation is used in deductive inference, or that the tails together can be inferred from the

head in case of abductive inference. Only when considering the available evidence can directionality

of inference actually be read from the graph.650

Definition 6 (Evidence set). Let GI = (P,A) be an IG. An evidence set is a subset E ⊆ P for which

it holds that for every p ∈ E, ¬p /∈ E.

The restriction that for every p ∈ E it holds that ¬p /∈ E ensures that not both a proposition

and its negation are observed.

In figures in this paper, nodes in GI corresponding to elements of E are shaded and all shaded655

nodes correspond to elements of E. We emphasise that various evidence sets E can be used to

establish (different) inferences from the same IG.
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Example 25. In the Wigmore chart of Figure 1, the evidence consists of the testimonies.

In Figures 7 and 8, the IGs of Figures 3 and 4 are again depicted, with nodes in E =

{150, 151, 461, 463, 464, 466, 470} shaded. �660

We now define when we consider configurations of generalisation arcs and evidence to express

deductive and abductive inference.

4.2.1. Deductive inference

First, we specify under which conditions we consider a configuration of generalisation arcs and

evidence to express deductive inference, where strict and defeasible deduction are distinguished.665

Definition 7 (Deductive inference). Let GI = (P,A) be an IG, and let E ⊆ P be an evidence set. Let

p1, . . . , pn, q ∈ P, with q /∈ E. Then given E, q is deductively inferred from propositions p1, . . . , pn

using a generalisation g : {p1, . . . , pn} → q in G iff ∀pi, i = 1, . . . , n:

1. pi ∈ E, or;

2. pi is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . , rm}670

→ pi, where g′ /∈ Gc if g ∈ Ge, pi /∈ Enabler(g), or;

3. pi is abductively inferred from a proposition r ∈ P using a generalisation g′ : {pi, r1, . . . , rm} → r

in Gc ∪Ga, g 6= g′, r1, . . . , rm ∈ P (see Definition 8).

Here, proposition q is defeasibly deductively inferred from p1, . . . , pn, denoted p1, . . . , pn �g q, iff

g ∈ Gc ∪Ge ∪Ga
d ∪Go

d, and proposition q is strictly deductively inferred from p1, . . . , pn, denoted675

p1, . . . , pn ⇀g q, iff g ∈ Ga
s ∪Go

s .

For ease of reference, symbols� and ⇀ are annotated with the name of the generalisation used

in performing a defeasible or strict inference. In accordance with our assumptions stated in Section

2.1, deduction can be performed using all types of generalisations in G, where strict deduction can

only be performed using strict abstractions and strict other types of generalisations. The condition680

q /∈ E ensures that deduction cannot be performed with a generalisation to infer its consequent

in case its consequent is already observed. Deduction can only be performed using a generalisation

g ∈ G to infer its consequent Head(g) from its antecedents Tails(g) in case every antecedent

pi ∈ Tails(g) has been affirmed in that either pi is observed (i.e. pi ∈ E), pi itself is deductively

inferred, or pi is abductively inferred. In correspondence with Pearl’s constraint (see Section 2.4.1),685

we assume in condition 2 that a proposition q ∈ P cannot be deductively inferred from p1, . . . , pn ∈ P

using a generalisation g ∈ Ge if at least one of its actual antecedents pi ∈ Ant(g) is deductively

inferred using a generalisation g′ ∈ Gc. In this case, q and propositions ri ∈ Ant(g′) are considered
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistence of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during  
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

 
PROSECUTION

 DEFENCE

Figure 7. The IG of Figure 3, where evidence set E (shaded) and resulting inference steps (�) are also indicated.

153

462

464463

465

466

¬153

ee
g10 g11

g14
g15

Figure 8. The IG of Figure 4, where evidence set E (shaded) and resulting inference steps (�) are also indicated.

alternative explanations of pi as indicated by g and g′ (Definition 3, case 1b or case 2b). Condition

3 of Definition 7 is explained in Section 4.2.3, after abduction is defined.690

Example 26. In the IG of Figure 7, given E propositions 149, ¬149, 462, 465 and 469 are defeasibly

deductively inferred from 150 and 151, 461, 463 and 464, 466, and 470 using generalisations g1,

g2, g10, g11, and g12, respectively, as 150, 151, 461, 463, 464, 466, 470 ∈ E (Definition 7, condition

1). Proposition 152 is then defeasibly deductively inferred from 149 using g3, as 149 is deductively

inferred (Definition 7, condition 2). Propositions 153, 154 and 155 are then iteratively defeasibly695

deductively inferred using generalisations g4, g5 and g6, respectively. Finally, from 469, ¬155a is

defeasibly deductively inferred using g13, as 469 is deductively inferred. �
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The following example illustrates strict deductive inference.

Example 27. Consider Example 2 from Section 2.1. In this example, generalisation arc g :

lung cancer → cancer is included in Ga
s . As lung cancer ∈ E, cancer is strictly deductively inferred700

from lung cancer (Definition 7, condition 1). �

The next example illustrates the restrictions put on performing deduction in our IG-formalism.

Example 28. Figure 9a depicts an example of an IG in which q cannot be deductively inferred from p

using g1, as Head(g1) = q ∈ E. In Figure 9b, q cannot be deductively inferred from p1 and p2 using

g1, as p2 /∈ E and p2 is neither deductively nor abductively inferred.705

In Figure 9c, Example 8 illustrating Pearl’s constraint is modelled. As smoke machine ∈ E,

smoke is deductively inferred from smoke machine using g1 by condition 1 of Definition 7. fire cannot

in turn be inferred from smoke using g2 by condition 2 of Definition 7, as g2 ∈ Ge and smoke is

deductively inferred using g1 ∈ Gc. �

4.2.2. Abductive inference710

Next, we specify under which conditions we consider a configuration of generalisation arcs and

evidence to express abductive inference.

Definition 8 (Abductive inference). Let GI = (P,A) be an IG, and let E ⊆ P be an evidence set. Let

p1, . . . , pn, q ∈ P, with {p1, . . . , pn} ∩ E = ∅. Then given E, propositions p1, . . . , pn are abductively

inferred from q using a g : {p1, . . . , pn} → q in Gc ∪Ga, denoted q �g p1; . . . ; q �g pn, iff:715

1. q ∈ E, or;

2. q is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . ,

rm} → q in G, g 6= g′ (see Definition 7), where g′ /∈ Gc if g ∈ Gc and g′ /∈ Ga if g ∈ Ga, or;

3. q is abductively inferred from a proposition r ∈ P using a generalisation g′ : {q, r1, . . . , rm} → r

in Gc ∪Ga, r1, . . . , rm ∈ P.720

q

p
e

(a)

smoke

fire

e

(c)

smoke_machine

c

p2p1

q

c

(b)

g1
g1 g1

g2

Figure 9. Examples of IGs illustrating the restrictions put on performing deduction within our IG-formalism (a-c).
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In accordance with our assumptions stated in Section 2.2, abduction is defeasible and is modelled

using only causal generalisations and abstractions. Following Console and Dupré [13] and Bex [5],

we assume that abductive inference can be performed with both strict and defeasible abstractions,

where such an inference is always defeasible as it concerns an inference from the more abstract

consequent to a more specific antecedent (see Section 2.2). The condition {p1, . . . , pn} ∩ E = ∅725

ensures that abduction cannot be performed with a generalisation to infer its antecedents in case

at least one of its antecedents is already observed. Furthermore, abductive inference can only be

performed using a generalisation g ∈ Gc ∪Ga to infer its antecedents Tails(g) from its consequent

Head(g) in case Head(g) has been affirmed in that either Head(g) is observed (i.e. Head(g) ∈ E),

Head(g) is deductively inferred, or Head(g) is itself abductively inferred.730

In correspondence with Pearl’s constraint (see Section 2.4.1), we assume in condition 2 that

propositions p1, . . . , pn ∈ P cannot be abductively inferred from a proposition q ∈ P using a gener-

alisation g ∈ Gc if its consequent q is deductively inferred using a generalisation g′ 6= g, g′ ∈ Gc.

In enforcing this constraint, we do not need to consider whether or not the antecedents of g or g′

include enablers, as illustrated in Example 12 from Section 2.4.1. More specifically, in Definition 2735

it is assumed that ∀g ∈ Gc ∪Ge, Ant(g) 6= ∅; therefore, at least one proposition pi is an actual

antecedent of g and at least one proposition rj is an actual antecedent of g′, which are then alter-

native explanations of q according to case 2a of Definition 3 which may not be inferred from each

other by inferring q as an intermediary step. Similarly, we assume in condition 2 that g′ /∈ Ga if

g ∈ Ga to account for our constraints on performing deduction and abduction in that order with740

two abstractions (see Section 2.4.2). In this case, propositions p1, . . . , pn ∈ Tails(g) are alternative

explanations of r1, . . . , rm ∈ Tails(g′) as indicated by g and g′ according to case 3 of Definition 3.

Example 29. In the IG of Figure 7, given E proposition 155a is abductively inferred from 155 using

g7 ∈ Ga
d, as 155 is deductively inferred (Definition 8, condition 2). In turn, propositions 156 and

Π3 are iteratively abductively inferred using generalisations g8 ∈ Ga
s and g9 ∈ Gc, respectively. Note745

that although g8 is a strict abstraction, the abductive inference from 155a to 156 is defeasible and not

strict; specifically, that Sacco was conscious of having been involved in a robbery and shooting does

not allow us to strictly infer that he was conscious of having been involved in the specific robbery

and shooting that took place in South Braintree.

In the IG of Figure 10a, q and r1 are abductively inferred from r using generalisation750

g3 : {q, r1} → r in Gc by condition 1 of Definition 8, as r ∈ E. Then by condition 3 of Definition 8,

p1 and p2 are abductively inferred from q using g1 and g2, respectively. �

The following example further illustrates abductive inference with abstractions.
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Figure 10. Example of an IG illustrating abduction with causal generalisations (a); example of an IG illustrating

abduction with abstractions (b).

Example 30. In Figure 10b, Example 15 from Section 2.4.2 is modelled as an IG. As smoking ∈ E,

cancer is deductively inferred from smoking using g′3. Propositions lung cancer and colon cancer are755

then abductively inferred from cancer using strict abstractions g′1 and g′2, respectively (Definition 8,

condition 2). Hence, in this example, a cause ( smoking) for an event ( cancer) is known, after which

this event is inferred and is in turn further specified at a lower level of abstraction ( lung cancer or

colon cancer). As noted in Section 2.4.2, this type of mixed inference using a causal generalisation

and abstractions does not lead to undesirable results. �760

The following examples illustrate that Pearl’s constraint for mixed deductive-abductive inference

(see Section 2.4.1), as well as our proposed constraints on performing inference with abstractions

(see Section 2.4.2), are adhered to.

Example 31. In Figure 11a, Example 9 is modelled as an IG. As smoke machine ∈ E, smoke is

deductively inferred from smoke machine using g1. fire cannot be inferred from smoke, as g2 ∈ Gc
765

and smoke is deductively inferred using g1 ∈ Gc (Definition 8, condition 2).

In Figure 11b, Example 13 is modelled as an IG. As gun ∈ E, deadly weapon is deductively

inferred from gun using g1. knife cannot in turn be inferred from deadly weapon, as g2 ∈ Ga and

deadly weapon is deductively inferred using g1 ∈ Ga (Definition 8, condition 2). �

smoke

fire smoke_machine

c g1g2 c

fire

heat smoke

cc g1g2

(a) (c)

¬heat

(b)

deadly_weapon

knife gun

a
g1g2 a

Figure 11. An IG illustrating Pearl’s constraint for mixed deductive-abductive inference (a); an IG illustrating our

inference constraints for abstractions (b); an IG illustrating mixed abductive-deductive inference (c).

29



stone

hit_angular

tes1

e

a

hammer

a

tes2

e

g3

g1 g2

g4

autopsy

eg5 head_wound

fell_on_table

c c

tes3

e g8

g6 g7

Figure 12. The IG of Figure 5, where evidence set E (shaded) and resulting inference steps (�) are also indicated.

The following example describes the inferences that can be made based on the IG of Figure 5770

corresponding to the mind map example of Section 3.2.

Example 32. Consider the IG of Figure 12. Given E = {tes1, tes2, tes3, autopsy}, head wound

is deductively inferred from autopsy using g5. Then, hit angular and fell on table are abductively

inferred from head wound using g6 and g7, respectively (Definition 8, condition 2). head wound

is also deductively inferred from fell on table using g7, as fell on table is deductively inferred from775

tes3 using g8; the inference type of g7 is, therefore, ambiguous (see Section 2.5). hammer and stone

are abductively inferred from hit angular using g3 and g4, respectively (Definition 8, condition 3).

hit angular is also deductively inferred from hammer and stone using g3 and g4, respectively, as

hammer is deductively inferred from tes1 using g1 and stone is deductively inferred from tes2 using

g2. Then, head wound is deductively inferred from hit angular using g6. �780

4.2.3. Mixed abductive-deductive inference

As apparent from Definitions 7 and 8, mixed abductive-deductive inference can be performed within

our IG-formalism.

Example 33. In Figure 11c, Example 7 from Section 2.4 is modelled as an IG. From smoke, fire is

abductively inferred using g1, as smoke ∈ E. Then heat is deductively inferred (or predicted) from785

fire using g2 (Definition 7, condition 3). �
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5. An argumentation formalism based on information graphs

Based on our IG-formalism from Section 4, we now define an argumentation formalism that allows for

both deductive and abductive argumentation. Note that the IG-formalism is not an argumentation

formalism, and that no semantics for IGs were defined in Section 4. Instead, we defined how inference790

can be performed with IGs and we defined different notions of conflicts. In the current section, we

define an argumentation formalism based on IGs which allows us to assign a semantics to arguments

constructed on the basis of IGs. More specifically, our approach generates an abstract argumentation

framework as in Dung [14], that is, a set of arguments with a binary attack relation, which thus allows

arguments based on IGs to be formally evaluated according to Dung’s semantics. We can then study795

properties of generated AFs; in particular, we prove that Caminada and Amgoud’s [10] postulates are

satisfied by instantiations of our formalism, which warrants the sound definition of instantiations of

our argumentation system and implies that anomalous results such as issues regarding inconsistency

and non-closure as identified by [10] are avoided. Our argumentation formalism extends a preliminary

version proposed in [38] that was based on a more restricted version of our IG-formalism [39] in which800

only causal and evidential generalisations without enablers were considered. Moreover, satisfaction

of rationality postulates was not proven in that paper.

In Section 5.1, we define arguments on the basis of a provided IG and an evidence set E, which

capture sequences of deductive and abductive inference applications as defined in Definitions 7 and

8 starting with elements from E. We then formally prove that arguments constructed on the basis805

of IGs conform to our inference constraints (Section 2.4). In Section 5.2, we define several types of

attacks between arguments based on IGs, which are based on the different types of conflicts defined

for our IG-formalism. In Section 5.3 we instantiate Dung’s abstract approach with arguments and

attacks based on IGs and provide the definitions of Dung’s argumentation semantics. In Section 5.4,

we then prove that rationality postulates [10] are satisfied by instantiations of our formalism.810

5.1. Arguments

In this section, we define how arguments on the basis of an IG and an evidence set E are constructed.

Here, we take inspiration from the definition of an argument as defined for the ASPIC+ framework

[21]. By remaining close to the ASPIC+ framework, this allows us to straightforwardly show that

rationality postulates are satisfied for our argumentation formalism based on IGs (see Section 5.4).815

In what follows, for a given argument, the operator Prem returns all propositions in E used to

construct the argument, Conc returns its conclusion, Sub returns all its sub-arguments (including

itself), ImmSub returns its immediate sub-arguments, Gen returns all the generalisations used

in constructing the argument, TopGen returns the last generalisation used in constructing the
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argument, DefInf and StInf return all the defeasible and strict inferences used in constructing the820

argument, respectively, and TopInf returns the last inference used in constructing the argument.

Definition 9 is explained and illustrated in Examples 34 and 35.

Definition 9 (Argument). Let GI = (P,A) be an IG, and let E ⊆ P be an evidence set. An argument

A on the basis of GI and E is any structure obtainable by applying one or more of the following

steps finitely many times, where steps 2 (i.e. step 2a or 2b) and 3 or vice versa are not subsequently825

applied using the same generalisation arc g ∈ G:

1. p if p ∈ E, where: Prem(A) = {p}; Conc(A) = p; Sub(A) = {A}; ImmSub(A) = ∅; Gen(A) =

∅; TopGen(A) = undefined; DefInf(A) = ∅; StInf(A) = ∅; TopInf(A) = undefined.

2a. A1, . . . , An �g p if A1, . . . , An are arguments such that p is defeasibly deductively inferred

from Conc(A1), . . . ,Conc(An) using a generalisation g : {Conc(A1), . . . ,Conc(An)} → p830

according to Definition 7, where it holds that g ∈ Gc ∪ Ge ∪ Ga
d ∪ Go

d and if g is of the

form g : c → e in Gc and its evidential counterpart g′ : e → c is included in Ge, then

g′ /∈ Gen(A1) ∪ . . . ∪Gen(An). For A, it holds that:

Prem(A) = Prem(A1) ∪ . . . ∪Prem(An); Conc(A) = p;

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}; ImmSub(A) = {A1, . . . , An};835

Gen(A) = Gen(A1) ∪ . . . ∪Gen(An) ∪ {g}; TopGen(A) = g;

DefInf(A) = DefInf(A1) ∪ . . .DefInf(An) ∪ {Conc(A1), . . . ,Conc(An)�g p};

StInf(A) = StInf(A1) ∪ . . .StInf(An);

TopInf(A) = Conc(A1), . . . ,Conc(An)�g p.

2b. A1, . . . , An ⇀g p if A1, . . . , An are arguments such that p is strictly deductively inferred840

from Conc(A1), . . . ,Conc(An) using a generalisation g ∈ Ga
s ∪ Go

s , g : {Conc(A1), . . . ,

Conc(An)} → p according to Definition 7, where Prem(A), Conc(A), Sub(A), ImmSub(A),

Gen(A) and TopGen(A) are defined as in step 2a, and where:

DefInf(A) = DefInf(A1) ∪ . . .DefInf(An);

StInf(A) = StInf(A1) ∪ . . .StInf(An) ∪ {Conc(A1), . . . ,Conc(An) ⇀g p};845

TopInf(A) = Conc(A1), . . . ,Conc(An) ⇀g p.

3. A′ �g p if A′ is an argument such that p is abductively inferred from Conc(A′) using a gen-

eralisation g ∈ Gc ∪Ga, g : {p, p1, . . . , pn} → Conc(A′) for some propositions p1, . . . , pn ∈ P

according to Definition 8, where:

Prem(A) = Prem(A′); Conc(A) = p; Sub(A) = Sub(A′) ∪ {A}; ImmSub(A) = {A′};850

Gen(A) = Gen(A′) ∪ {g}; TopGen(A) = g; DefInf(A) = DefInf(A′) ∪ {Conc(A′)�g p};

StInf(A) = StInf(A′); TopInf(A) = Conc(A′)�g p.
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Note that we overload symbols� and ⇀ to denote an argument while it also denotes a defeasible

or strict inference. The set of all arguments on the basis of GI and E is denoted by A.

An argument A ∈ A is called strict if DefInf(A) = ∅; otherwise, A is called defeasible. An855

argument A ∈ A is called a premise argument if only step 1 of Definition 9 is applied, deductive if

only steps 1, 2a and 2b are applied, abductive if only steps 1 and 3 are applied, and mixed otherwise.

The restriction that steps 2 (i.e. step 2a or 2b) and 3 or vice versa are not subsequently applied

using the same generalisation arc g ∈ G ensures that cycles in which two propositions are iteratively

deductively and abductively inferred from each other using the same g are avoided in argument860

construction. Similarly, in case causal generalisation g : c→ e has an evidential counterpart g′ : e→ c

(see Sections 2.3 and 4.1), then the restriction in step 2a that g′ /∈ Gen(A1)∪ . . .∪Gen(An) ensures

that cycles in which c and e are iteratively deductively inferred from each other using g′ and g are

avoided. Note that cycles in which c and e are iteratively deductively inferred from each other using

g and g′ in that order are already avoided due to the enforcement of Pearl’s constraint in condition865

2 of Definition 7.

Example 34. Consider Figure 13, in which arguments constructed on the basis of the IG of Figure 7

are indicated. According to step 1 of Definition 9, A1 : 150 and A2 : 151 are premise arguments. Based

on A1 and A2, defeasible deductive argument A3 : A1, A2�g1149 is constructed by step 2a of Defini-

tion 9, as 149 is defeasibly deductively inferred from 150 and 151 using g1 ∈ Ge. Arguments A4 : A3870

�g3152; A5 : A4 �g4153; A6 : A5 �g5154 and A7 : A6 �g6155 similarly are defeasible deductive

arguments. Argument A8 : A7 �g7155a is a defeasible mixed argument by step 3 of Definition 9, as

155a is abductively inferred from 155 using g7. Similarly, arguments A9 : A8 �g8156 and A10 : A9

�g9Π3 are defeasible mixed arguments. To illustrate the operators used in Definition 9, for A8, we

have that Prem(A8) = {150, 151}; Conc(A8) = 155a; Sub(A8) = {A1, A2, A3, A4, A5, A6, A7, A8};875

ImmSub(A8) = {A7}; Gen(A8) = {g1, g3, g4, g5, g6, g7}; TopGen(A8) = g7; DefInf(A8) =

{150, 151�g1149; 149�g3152; 152�g4153; 153�g5154; 154�g6155; 155�g7155a}; StInf(A8) = ∅;

TopInf(A8) = 155�g7155a. �

Step 3 of Definition 9 is now illustrated in more detail.

Example 35. On the basis of the IG of Figure 10a and E = {r}, A′1 : r is a premise argument. From880

A′1, arguments A′2 : A′1 �g3 r1 and A′3 : A′1 �g3 q are constructed by step 3 of Definition 9, as q

and r1 are abductively inferred from Conc(A′1) using causal generalisation g3 : {q, r1} → r. Then

again by step 3, A′4 : A′3 �g1 p1 and A′5 : A′3 �g2 p2 are constructed using g1 and g2, respectively.�
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistence of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during  
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

 
PROSECUTION

 DEFENCE

Figure 13. Annotation of the IG of Figure 7, where arguments and direct attacks (99K) on the basis of the IG and E

are also indicated.

5.1.1. Properties of arguments based on IGs

We now prove a number of formal properties of arguments based on IGs. Lemma 1 states that885

the conclusions of deductive, abductive, and mixed arguments constructed in our argumentation

formalism based on IGs are not observed.

Lemma 1. Let A be a set of arguments on the basis of IG GI = (P,A) and evidence set E. Let

A ∈ A be a deductive, abductive, or mixed argument. Then Conc(A) /∈ E.

Proof. As A is not a premise argument, step 2a, step 2b or step 3 of Definition 9 is applied last in890

constructing A. In case step 2a or 2b of Definition 9 is applied last, then ∃g ∈ G such that Head(g) =

Conc(A) is deductively inferred using TopGen(A) = g according to Definition 7. Hence, per the

restrictions of Definition 7, Head(g) = Conc(A) /∈ E. In case step 3 of Definition 9 is applied last,

then ∃g ∈ G such that Conc(A) ∈ Tails(g) is abductively inferred using TopGen(A) = g according

to Definition 8. Hence, Conc(A) /∈ E per the restriction of Definition 8 that Tails(g) ∩E = ∅. �895

In performing inference care should be taken that no cause for an effect is inferred in case an

alternative cause for this effect was already previously inferred (see Section 2.4.1). Similarly, care

should be taken that no version of an event at a lower level of abstraction is inferred if an alternative

34



version of this event at a lower level of abstraction was already previously inferred (see Section 2.4.2).

In the context of IGs, for g ∈ Gc, propositions in Ant(g) express causes for the common effect900

expressed by Head(g), for g ∈ Ge, Head(g) expresses the usual cause for propositions in Ant(g),

and for g ∈ Ga, propositions in Tails(g) are at a lower level of abstraction than Head(g). Hence,

in defining how inferences can be read from IGs, restrictions are put in Definitions 7 and 8 such

that our inference constraints (see Section 2.4) are adhered to. We now formally prove that these

inference constraints are never violated in constructing sequences of arguments on the basis of IGs.905

First, we formally define the inference constraints of Section 2.4 in the context of arguments

constructed on the basis of IGs.

Definition 10 (Inference constraint). Let A be a set of arguments on the basis of IG GI = (P,A) and

evidence set E. Let p1, p2 ∈ P be alternative explanations of q ∈ P as indicated by generalisations

g1 and g2 in G (see Definition 3). If arguments A and B exist in A with Conc(B) = q, A ∈910

ImmSub(B), and Conc(A) = p1, then there does not exist an argument C ∈ A with B ∈ ImmSub(C)

and Conc(C) = p2.

We now formally prove that this inference constraint is indeed adhered to.

Proposition 1 (Adherence to inference constraint). Let A be a set of arguments on the basis of IG

GI = (P,A) and evidence set E. Then A adheres to the inference constraint of Definition 10.915

Proof. Assume that p1, p2 ∈ P are alternative explanations of q ∈ P as indicated by gen-

eralisations g1 and g2 in G, and assume that arguments A,B ∈ A exist with Conc(B) = q,

A ∈ ImmSub(B), Conc(A) = p1. Then we need to prove that no argument C exists in A with

B ∈ ImmSub(C) and Conc(C) = p2. In constructing argument B, either step 2a, step 2b or step 3

of Definition 9 is applied last, where generalisation g1 is used to infer Conc(B) = q. Here, g1 cannot920

be of the form g1 ∈ Ge, q ∈ Ant(g1), Head(g1) = p1 (Definition 3, case 1) as in this case antecedent

q of g1 is inferred from consequent p1 of g1, which would be an instance of abductive inference while

per the restrictions of Definition 8 abductive inference can only be performed using generalisations

in Gc ∪Ga. More specifically, argument B cannot be constructed by applying step 2a, 2b and 3 of

Definition 9 last if g1 is of that form. Thus, we only need to consider cases 2 and 3 of Definition 3,925

where a generalisation g1 ∈ Gc, Head(g1) = q, p1 ∈ Ant(g1) respectively a generalisation g1 ∈ Ga,

Head(g1) = q, p1 ∈ Tails(g1) is used to construct B, namely by applying step 2a or 2b of Definition

9 last to deductively infer Conc(B) = q. We now show that for the given options for g1, no argument

C with B ∈ ImmSub(C), Conc(C) = p2 can be constructed using g2.
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• First, consider case 2a of Definition 3 in which g2 6= g1, g2 ∈ Gc, Head(g2) = q, p2 ∈ Ant(g2).930

Then no argument C with B ∈ ImmSub(C), Conc(C) = p2 can be constructed using g2, as in

this case abduction would be performed with g2 to infer p2 from q while per the restrictions in

condition 2 of Definition 8 abduction cannot be performed with g2 as Head(g2) was previously

deductively inferred using g1 ∈ Gc. In particular, step 3 of Definition 9 cannot be applied in

constructing C using g2. Furthermore, neither step 2a nor step 2b of Definition 9 can be applied935

in constructing C using g2, as these steps specify deductive and not abductive inferences.

• Next, consider case 2b of Definition 3 in which g2 ∈ Ge, Head(g2) = p2, q ∈ Ant(g2). Then

no argument C with B ∈ ImmSub(C), Conc(C) = p2 can be constructed using g2, as in this

case deductive inference would be performed with g2 to infer p2 while per the restrictions in

condition 2 of Definition 7 deductive inference cannot be performed with g2 as q ∈ Ant(g2) was940

previously deductively inferred using g1 ∈ Gc. In particular, step 2a of Definition 9 cannot be

applied in constructing C using g2. Furthermore, step 2b of cannot be applied in constructing

C using g2, as this step can only be applied using strict generalisations and g2 /∈ Ga
s ∪Go

s ,

and step 3 cannot be applied in constructing C using g2, as this step specifies an abductive

and not a deductive inference.945

• Finally, consider case 3 of Definition 3 in which g2 6= g1, g2 ∈ Ga, Head(g2) = q, p2 ∈ Tails(g2).

Then no argument C with B ∈ ImmSub(C), Conc(C) = p2 can be constructed using g2, as in

this case abduction would be performed with g2 to infer p2 from q while per the restrictions in

condition 2 of Definition 8 abduction cannot be performed with g2 as Head(g2) was previously

deductively inferred using g1 ∈ Ga. In particular, step 3 of Definition 9 cannot be applied in950

constructing C using g2. Furthermore, neither step 2a nor step 2b of Definition 9 can be applied

in constructing C using g2, as these steps specify deductive and not abductive inferences. �

5.2. Attack

In this section, several types of attacks between arguments on the basis of IGs are defined. Among

the types of attacks that are typically distinguished in structured argumentation (for instance in955

ASPIC+ [21]) are rebuttal, undermining, and undercutting attack. Of these types of attacks, we

only consider rebuttal and undercutting attack and not undermining attacks (i.e. attack on an

argument’s premises [21]), as in IGs we assume that all premises are certain and cannot be attacked

(cf. ASPIC+’s axiom premises). We also distinguish a fourth type of attack, namely alternative

attack, a concept based on the notion of competing alternative explanations (see Section 2.2) that960

is inspired by [3,6]. In our argumentation formalism, attacks directly follow from the constructed
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arguments and the specified exception arcs in an IG. Hence, attacks between arguments do not need

to be separately specified by the user.

First, we define the general notion of attack, after which the different types of attacks are defined.

Definition 11 (Attack). Let A be a set of arguments on the basis of IG GI and evidence set E. Let965

A,B ∈ A. Then A attacks B iff A rebuts B, A undercuts B, or A alternative attacks B, as defined

in Definitions 12, 13 and 14, respectively.

5.2.1. Rebuttal attack

First, rebuttal attack is defined. Informally, a rebuttal is an attack on the conclusion of an argument

for which it holds that the last inference used in constructing the argument is defeasible.970

Definition 12 (Rebuttal attack). Let A be a set of arguments on the basis of IG GI = (P,A) and

evidence set E. Let A,B,B′ ∈ A with B′ ∈ Sub(B). Then A rebuts B (on B′) iff there exists a

negation arc n : Conc(A) ! Conc(B′) in N and B′ is of the form B′′1 , . . . , B
′′
n �g p for some

B′′1 , . . . , B
′′
n ∈ A, p ∈ P.

Note that, as it is assumed that B′ is of the form B′′1 , . . . , B
′′
n�g p (i.e. TopInf(B′) is defeasible),975

it holds that B′ is a deductive, abductive, or mixed argument; hence, by Lemma 1, Conc(B′) /∈ E.

Furthermore, while a negation arc expresses a symmetric conflict, our definition of rebuttal attack

allows for both symmetric or asymmetric rebuttal, as illustrated by the following example.

Example 36. Consider the IG of Figure 13. Let A1, A2, A3 be the arguments introduced in Exam-

ple 34. Let B1 : 461 and let B2 : B1 �g2 ¬149. Then B2 rebuts A3 (on A3) and A3 rebuts B2980

(on B2), as Conc(A3) = 149, Conc(B2) = ¬149 (and hence n : 149 ! ¬149 in N), where

TopInf(A3) = 150, 151�g1149 and TopInf(B2) = 461�g2¬149 are defeasible. This symmetric

rebuttal is indicated in Figure 13 by means of a bidirectional dashed arc between these propositions.

Similarly, let A8 be as introduced in Example 34, and let B3 : 470; B4 : B3 �g12 469; B5 : B4 �g13

¬155a. Then A8 rebuts B5 (on B5) and B5 rebuts A8 (on A8).985

Consider again Example 33, in which heat is predicted from fire. Assume that contrary to this

prediction we observe that there is no heat (¬heat ∈ E). Let A′′1 : smoke; A′′2 : A′′1 �g1 fire; A′′3 : A′′2

�g2 heat; B′′1 : ¬heat. Then B′′1 rebuts A′′3 (on A′′3), but A′′3 does not rebut B′′1 as B′′1 is not of the

form B′′′1 , . . . , B′′′n �g p for some B′′′1 , . . . , B′′′n ∈ A, p ∈ P (i.e. B′′1 is a premise argument). �

5.2.2. Undercutting attack990

Next, undercutting attack is considered. Informally, an undercutter attacks a defeasible inference

by providing exceptional circumstances under which the inference may not be applicable. In our
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argumentation formalism based on IGs, undercutting attacks between arguments follow from the

specified exception arcs in GI . Specifically, as an exception arc directed from p ∈ P to g ∈ Gc∪Ge∪

Ga
d∪G

o
d specifies an exception to defeasible generalisation g, an argument A ∈ A with Conc(A) = p995

undercuts an argument B ∈ A with g ∈ Gen(B).

Definition 13 (Undercutting attack). Let A be a set of arguments on the basis of IG GI = (P,A)

and evidence set E. Let A,B,B′ ∈ A with B′ ∈ Sub(B). Then A undercuts B (on B′) iff there exists

an exception arc x ∈ X such that x : Conc(A) g and TopGen(B′) = g ∈ Gc ∪Ge ∪Ga
d ∪Go

d.

Undercutting attack is illustrated by the following example.1000

Example 37. Consider the IG of Figure 13. Let A1, A2, A3, A4, A5 be the arguments introduced in

Example 34. Let C1 : 466; C2 : C1 �g11 465. Then C2 undercuts A5 (on A5), as x : 465  g4 in

X and TopGen(A5) = g4 ∈ Ge. This direct attack is indicated in Figure 13 by means of a dashed

arc directed from 465 to defeasible inference 152 �g4 153. As undercutting attack is defined on

subarguments, C2 also attacks Ai for i ≥ 6. Similarly, let C3 : 463; C4 : 464; C5 : C3, C4 �g10 462.1005

Then C5 undercuts A5 (on A5), as x : 462  g4 in X and TopGen(A5) = g4. Argument C5 then

also attacks Ai for i ≥ 6. �

5.2.3. Alternative attack

Lastly, alternative attack is defined. Arguments are involved in alternative attack iff their abductively

inferred conclusions are competing alternative explanations (see Section 2.2).1010

Definition 14 (Alternative attack). Let A be a set of arguments on the basis of IG GI = (P,A) and

evidence set E. Let p1, p2 ∈ P be alternative explanations of q ∈ P as indicated by generalisations

g and g′ in G, where either g, g′ ∈ Gc (Definition 3, case 2a) or g, g′ ∈ Ga (Definition 3, case

3). Let A,B,B′ ∈ A with B′ ∈ Sub(B). Then A alternative attacks B (on B′) iff there exists

an argument C ∈ ImmSub(A) ∩ ImmSub(B′) such that Conc(A) = p1 and Conc(B′) = p2 are1015

abductively inferred from Conc(C) = q using generalisations g and g′, respectively.

Note that A only alternative attacks B on B′ iff TopInf(B′) is an abductive inference and

hence iff the last used inference in constructing B′ is defeasible. Furthermore, unlike direct rebuttal

attack, which can either be symmetric or asymmetric, direct alternative attack is always symmetric

in that A alternative attacks B on B iff B alternative attacks A on A.1020

Under the conditions set out in Definition 14, arguments Ai : C �g pi for pi ∈ Ant(g) con-

structed from C via abductive inference using g are involved in alternative attack with A′j : C �g′ p′j

for p′j ∈ Ant(g′) constructed from C via abductive inference using g′. We do not consider argu-
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ments Ai : C �g pi for pi ∈ Enabler(g) to be in competition with arguments A′j : C �g′ p′j for

p′j ∈ Enabler(g′), as enablers of causal generalisations do not express alternative causes for the1025

consequent. Arguments Ai (as well as A′j) are not involved in alternative attack among themselves,

in accordance with our assumption that the antecedents of a causal generalisation or abstraction

are not in competition. Finally, in case g ∈ Gc and g′ ∈ Ga, then arguments Ai are not involved

in alternative attack with A′j , as the actual antecedents of g express causes for the effect expressed

by the consequent but the tails of g′ are not alternative explanations of the consequent; instead,1030

propositions in Tails(g′) are at a lower level of abstraction than Head(g′).

Example 38. Consider the IG of Figure 12. Given E, arguments D1 : autopsy; D2 : D1 �g5

head wound; D3 : D2 �g6 hit angular; D4 : D2 �g7 fell on table; D5 : D3 �g3 hammer; and

D6 : D3�g4 stone are constructed. Here, hit angular and fell on table are abductively inferred from

head wound using g6 and g7, respectively, and hammer and stone are abductively inferred from1035

hit angular using g3 and g4, respectively. Then D3 alternative attacks D4 (on D4) and D4 alterna-

tive attacks D3 (on D3), as Conc(D3) = hit angular and Conc(D4) = fell on table are alternative

explanations of Conc(D2) = head wound as indicated by g6 and g7 in Gc (Definition 3, case 2a).

As D3 ∈ Sub(D5) and D3 ∈ Sub(D6), D4 also alternative attacks D5 and D6 (on D3). Finally, D5

alternative attacks D6 (on D6) and D6 alternative attacks D5 (on D5), as Conc(D5) = hammer1040

and Conc(D6) = stone are alternative explanations of Conc(D3) = hit angular as indicated by g3

and g4 in Ga (Definition 3, case 3).

Consider Example 12 from Section 2.4.1. Assume that in addition to generalisations g1 and

g2, evidential generalisation g3 : see fire → fire is provided. Given E = {see fire}, arguments E1 :

see fire; E2 : E1�g3 fire; E3 : E2�g1 torch; E4 : E2�g2 match; and E5 : E2�g2 oxygen are con-1045

structed. Then E3 and E4 are involved in alternative attack, as Conc(E3) = torch and Conc(E4) =

match are alternative explanations of Conc(E2) = fire as indicated by g1 and g2 in Gc (Definition

3, case 2a), where torch and match are abductively inferred from fire using g1 and g2, respectively.

E3 is not involved in alternative attack with E5, as Conc(E5) = oxygen ∈ Enabler(g2).

Consider Figure 10a. Let A′1, A′2, A′3 be as defined in Example 35. Then A′2 and A′3 are not1050

involved in alternative attack, as r1 = Conc(A′2) and q = Conc(A′3) are abductively inferred from

r = Conc(A′1) using the same generalisation g3; specifically, in case 2a of Definition 3 it is assumed

that g 6= g′, and hence r1 and q are not alternative explanations of r by that definition. �

Finally, note that a causal generalisation g1 : c1 → e may be replaced by an evidential gener-

alisation g′1 : e → c1 if c1 is the usual cause of e, in which case abduction with g1 can be encoded1055

as deduction with g′1 (see Section 2.3). Considering the case in which only g1 and not g′1 is in-
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cluded in IG GI and additional causal generalisation g2 : c2 → e is provided, then arguments A1 : e,

A2 : A1 �g1
c1, A3 : A1 �g2

c2 are constructed upon observing e, where A2 and A3 are involved in

alternative attack according to Definition 14. However, in case only g′1 and g2 are included in GI and

not g1, then arguments A1 : e, A′2 : A1 �g′
1
c1, A3 : A1 �g2 c2 are constructed, where A′2 and A3 are1060

not involved in alternative attack as g′1 ∈ Ge. Hence, if the knowledge engineer considers c1 and c2

to be competing alternative explanations of e, then the involved generalisations should be modelled

as causal generalisations in order to achieve alternative attack among constructed arguments. Alter-

natively, A3 can be interpreted as an undercutter of A′2 as it provides an exception to the performed

inference (see also [6, p. 15]). We reiterate that it is the responsibility of the knowledge engineer in1065

consultation with the domain expert to decide which knowledge (including conflicts) to represent in

an IG and to ensure this knowledge is modelled correctly (see also Section 4.1).

5.3. Argument evaluation

In this section, we provide Dung’s definitions for argumentation semantics [14] and illustrate these

definitions for our running example.1070

First, we instantiate Dung’s abstract approach with arguments and attacks based on IGs.

Definition 15 (Argumentation framework). Let GI = (P,A) be an IG, and let E ⊆ P be an evidence

set. An argumentation framework (AF) defined by GI and E is a pair (A, C), where A is the set

of all arguments on the basis of GI and E as defined by Definition 9, and where (A,B) ∈ C iff

A,B ∈ A and A attacks B (see Definition 11).1075

An AF can be represented as a directed graph in which arguments are represented by circles

and attacks are indicated by solid arcs (→); an example of an AF is depicted in Figure 14.

Given an AF, we can use any semantics for AFs as defined in [14] for determining the dialectical

status of arguments (cf. [21]). The theory of AFs is built around the notion of an extension, which

is a set of arguments that is internally coherent and defends itself against attack.1080

Definition 16 (Dung extensions). Let (A, C) be an AF defined by IG GI and evidence set E.

• A set of arguments S ⊆ A is conflict-free if there do not exist A,B ∈ S such that (A,B) ∈ C.

• An argument A ∈ A is acceptable with respect to some set of arguments S ⊆ A iff for all

arguments B such that (B,A) ∈ C there exists an argument C ∈ S such that (C,B) ∈ C.

• A conflict-free set of arguments S ⊆ A is an admissible extension iff every argument A ∈ S is1085

acceptable with respect to S.

• An admissible extension S is a complete extension iff A ∈ S whenever A is acceptable with

respect to S; S is the grounded extension iff S is the set inclusion minimal complete extension;
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S is a preferred extension iff S is a set inclusion maximal complete extension; and S is a stable

extension iff it is preferred and ∀B /∈ S ,∃A ∈ S such that (A,B) ∈ C.1090

The acceptability of arguments in abstract argumentation frameworks can then be evaluated

by establishing whether a given argument is a member of the various extensions. Arguments are

then assigned a dialectical status that can either be ‘justified’, ‘overruled’, or ‘defensible’, where

informally an argument is justified if it survived the competition, overruled if it did not survive the

competition, and defensible if it is involved in a tie.1095

Definition 17 (Justified, overruled and defensible arguments, adapted from [30]). Let (A, C) be an

argumentation framework.

• An argument is (i) justified under grounded semantics iff it is a member of the grounded extension,

(ii) overruled under grounded semantics iff it is not justified under grounded semantics and it

is attacked by an argument that is justified under grounded semantics, or (iii) defensible under1100

grounded semantics iff it is neither justified nor overruled under grounded semantics.

• Let T ∈ {complete, preferred, stable}. An argument is (i) justified under T semantics iff it is a

member of all T extensions, (ii) overruled under T semantics iff it is not a member of any T

extension, or (iii) defensible under T semantics iff it is a member of some but not all T extensions.

We now illustrate the evaluation of arguments based on IGs through our running example.1105

Example 39. Consider the IG of Figure 13. To prevent this example from becoming too involved, we

consider the following subset of arguments A = {A1, A2, A3, A4, A5, B1, B2, C1, C2, C3, C4, C5} and

binary attack relation C = {(A3, B2), (B2, A3), (B2, A4), (B2, A5), (C2, A5), (C5, A5)} over A (see

Examples 34, 36 and 37). These arguments and attacks are depicted in Figure 14. The complete

extensions of (A, C) are:1110

A1 A2 A3 B2

A4

A5

C1

C2

B1

C3 C4

C5

Figure 14. AF corresponding to the IG of Figure 13.
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S1 = {A1, A2, B1, C1, C2, C3, C4, C5};

S2 = {A1, A2, B1, B2, C1, C2, C3, C4, C5}

S3 = {A1, A2, A3, A4, B1, C1, C2, C3, C4, C5}.
1115

Under complete semantics, A1, A2, B1, C1, C2, C3, C3, C4, C5 are justified as they are members of all

complete extensions, A5 is overruled as it is attacked by a justified argument, and A3, A4 and B2 are

defensible. For the other semantics, the same statuses are assigned; for grounded semantics, this is

the case as S1 is the set inclusion minimal complete extension. Furthermore, note that S2 and S3
are set inclusion maximal complete extensions for which it holds that ∀B /∈ Si,∃A ∈ Si such that1120

(A,B) ∈ C for i = 2, 3; hence, S2 and S3 are preferred and stable extensions. �

Dung’s abstract argumentation approach has been extended with new elements, for instance by

adding support relations to abstract argumentation frameworks (e.g. [11]) or by adding preference

relations (e.g. so-called preference-based argumentation frameworks, or PAFs [1]), probabilities (see

e.g. [16] for an overview), or weights [15] to AFs; a more complete overview is provided in [32]. We1125

opt for the approach introduced by Dung for the evaluation of arguments as it is a well-studied

and widely accepted approach in the field of computational argumentation. Moreover, the relations

between Dung’s fully abstract approach and formalisms for structured argumentation that are at an

intermediate level of abstraction between concrete instantiating logics and Dung’s approach, such as

ASPIC+ [21] and assumption-based argumentation (ABA) [7], have been previously investigated. In1130

our IG-formalism, we have currently opted not to account for preferences, as these are typically not

indicated in tools domain experts use. As the components of our argumentation formalism based on

IGs are directly defined based on the elements that are accounted for in our IG-formalism, preferences

are currently not accounted for in our argumentation formalism. As shown in work on structured

argumentation with preferences (e.g. [21]), the structure of arguments is crucial in determining how1135

preferences must be applied to attacks and one should be cautious in extending AFs with additional

elements without taking the structure of arguments into account. There is some work on the relations

between support relations in abstract argumentation frameworks and those at the inference level

[31]. Relations between our proposed argumentation formalism and extended AFs such as [11] may

be investigated in future research.1140

5.4. Satisfying rationality postulates

Caminada and Amgoud [10] studied rule-based argumentation systems and identified conditions

under which unintuitive and undesirable results are obtained upon performing inference. They then

defined principles, called rationality postulates, that can be used to judge the quality of a given rule-
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based argumentation system. More specifically, so-called consistency and closure postulates were1145

formulated for systems allowing for strict and defeasible inferences. Since these postulates are widely

accepted as important desiderata for structured argumentation formalisms, we prove in this section

that these postulates are satisfied by instantiations of our argumentation formalism based on IGs.

5.4.1. Comparison of our argumentation formalism based on IGs to the ASPIC+ framework

In proving satisfaction of [10]’s rationality postulates, we follow Modgil and Prakken [21], who proved1150

satisfaction of these postulates for the ASPIC+ framework. As noted earlier, in defining our argu-

mentation formalism based on IGs we were inspired by the definitions of argument and attack as

given in [21]. In Definition 9, we defined how arguments on the basis of an IG and an evidence set E

are constructed. In step 2a of Definition 9, it is specified that an argument A with Conc(A) = p can

be constructed from arguments A1, . . . , An if p is defeasibly deductively inferred from Conc(A1),1155

. . . ,Conc(An) according to Definition 7 using a generalisation g : {Conc(A1), . . . ,Conc(An)} → p

in Gc ∪Ge ∪Ga
d ∪Go

d. Hence, in terms of the terminology used in the ASPIC+ framework, gener-

alisations in Gc ∪Ge ∪Ga
d ∪G

o
d can be interpreted as domain-specific defeasible inference rules3 in

ASPIC+’s Rd that are applied when constructing arguments. Similarly, in step 2b of Definition 9 it

is specified that an argument A with Conc(A) = p can be constructed from A1, . . . , An if p is strictly1160

deductively inferred from Conc(A1), . . . ,Conc(An) according to Definition 7 using a generalisation

g : {Conc(A1), . . . ,Conc(An)} → p in Ga
s ∪Go

s . Hence, generalisations in Ga
s ∪Go

s can be inter-

preted as domain-specific strict inference rules in ASPIC+’s Rs. Finally in step 3 it is specified that

an argument A with Conc(A) = p can be constructed from an argument A′ if p is abductively in-

ferred from Conc(A′) according to Definition 8 using a g ∈ Gc∪Ga, g : {p, p1, . . . , pn} → Conc(A′)1165

for some propositions p1, . . . , pn ∈ P. Therefore, besides specifying aforementioned domain-specific

defeasible and strict deduction rules, generalisations g : {q1, . . . , qn} → q in Gc ∪ Ga also specify

domain-specific abduction rules in ASPIC+’s Rd, namely for every i ∈ {1, . . . , n} a rule can be

specified in Rd that states that qi can be defeasibly inferred from q.

Considering the different types of attacks that are defined in Section 5.2, rebuttal as defined in1170

Section 5.2.1 is identical to rebuttal as defined for a special case of ASPIC+, namely one in which

conflict is based on the standard classical notion of negation. Undercutting as defined in Section

5.2.2 is a special case of undercutting as defined for ASPIC+, as we only consider undercutters of

inferences in case an exception is provided to a defeasible generalisation used in an inference step.

3For further details on using ASPIC+ to model domain-specific defeasible and strict inference rules, the reader is

referred to [22].
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Thus, of the types of attacks that are considered in our argumentation formalism, only alternative1175

attack is not accounted for in ASPIC+. Furthermore, in comparison to our argumentation formalism,

Modgil and Prakken do not impose any additional restrictions on argument construction. Hence, to

prove that instantiations of our argumentation formalism based on IGs satisfy rationality postulates,

in Section 5.4.3 we focus on showing how alternative attack and the additional restrictions that are

imposed on argument construction in our argumentation formalism can be taken account in the1180

results and proofs provided in [21].

5.4.2. Additional definitions and assumptions

Following Modgil and Prakken [21], we introduce the following definitions. We define what it means

for a set of propositions to be closed under strict generalisations.

Definition 18 (Closure under strict generalisations). Let GI = (P,A) be an IG and let P′ ⊆ P.1185

Then the closure of P′ under strict generalisations, denoted Cl(P′), is the smallest set containing

P′ and the consequent Head(g) of any g ∈ Ga
s ∪Go

s whose antecedents Tails(g) are in Cl(P′).

Next, the terms directly consistent and indirectly consistent set are defined.

Definition 19 (Directly consistent set). Let GI = (P,A) be an IG and let P′ ⊆ P. Then P′ is

directly consistent iff @p, q ∈ P′ such that p = −q.1190

A set P′ is indirectly consistent if its closure under strict generalisations is directly consistent.

Definition 20 (Indirectly consistent set). Let GI = (P,A) be an IG and let P′ ⊆ P. Then P′ is

indirectly consistent iff Cl(P′) is directly consistent.

As noted by Caminada and Amgoud [10], one should search for ways to alter or constrain one’s

argumentation formalism in such a way that rationality postulates are satisfied. Accordingly, follow-1195

ing Modgil and Prakken [21] we assume that IGs and evidence sets satisfy a number of properties.

Similar to ASPIC+, we leave the user free to make choices as to the strict and defeasible generali-

sations to include in G ⊆ A and the observations to include in E; however, some care needs to be

taken in making these choices to ensure that the result of argumentation is guaranteed to be well-

behaved. Specifically, to ensure rationality postulates are satisfied, we assume that evidence sets E1200

are indirectly consistent (referred to as the axiom consistency assumption), and we assume that G is

closed under transposition. Note that per definition every evidence set E ⊆ P is a directly consistent

set, as it is assumed in Definition 6 that for every p ∈ E, ¬p /∈ E. Furthermore, all examples of IGs

provided in this paper are axiom consistent, as they do not include generalisations g ∈ Ga
s ∪Go

s
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for which Tails(g) ⊆ E. Closure under transposition is one of the solutions proposed by Caminada1205

and Amgoud to ‘repair’ an argumentation system to ensure rationality postulates are satisfied [10,

p. 16], as it can help generate rules needed to obtain an intuitive outcome.

Definition 21 (Closure under transposition). Let GI = (P,A) be an IG. A strict generalisa-

tion g′ ∈ Ga
s ∪ Go

s is a transposition of g : {p1, . . . , pn} → p in Ga
s ∪ Go

s iff g′ is of the form

{p1, . . . , pi−1,−p, pi+1, . . . , pn} → −pi for some 1 ≤ i ≤ n. We say that G is closed under transpo-1210

sition iff for all strict generalisations g ∈ Ga
s ∪Go

s , the transpositions of g are also in Ga
s ∪Go

s .

An AF (A, C) defined by an IG GI that is axiom consistent and for which G ⊆ A is closed

under transposition is said to be well defined. In the remainder of this section, we assume that any

given AF (A, C) is well defined. Note that most examples of IGs provided in this paper only include

defeasible generalisations and not strict generalisations, and thus that AFs defined by these IGs are1215

well defined. The following example, adapted from Caminada and Amgoud [10], illustrates closure

under transposition and how ensuring it can help repair an argumentation system.

Example 40. In the IG depicted in Figure 15a, strict abstractions g2 : bachelor→ ¬has wife and g4 :

married → has wife are included. G is not closed under transposition, as generalisations has wife

→ ¬bachelor and ¬has wife → ¬married are not included. Arguments A5 and A6 constructed on the1220

basis of this IG have strict top inferences, as only step 2b of Definition 9 can be applied in construct-

ing A5 from A3 and A6 from A4 using g2 and g4 in Ga
s , respectively. Note that, as TopInf(A5) and

TopInf(A6) are strict, A5 and A6 are not involved in rebuttal. In fact, C = ∅ for the AF correspond-

ing to this IG, and hence under any semantics both A5 and A6 are justified. Thus, contradictory

propositions has wife and ¬has wife are both justified at the same time, which is clearly undesirable1225

and among other things violates the direct consistency postulate (see Theorem 1). In the IG depicted
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Figure 15. Example of an IG for which G is not closed under transposition (a); adjustment to this IG, in which

additional generalisations are included such that G is closed under transposition (b).

45



in Figure 15b, G is closed under transposition as additional generalisations has wife → ¬bachelor

and ¬has wife → ¬married are now included. In the corresponding AF, A7 directly rebuts A4 and

A8 directly rebuts A3 as TopInf(A3) and TopInf(A4) are defeasible. Then A7 indirectly rebuts A6

(on A4) and A8 indirectly rebuts A5 (on A3). Therefore, for this AF the more intuitive outcome is1230

obtained that A5 and A6 cannot both be in the same extension at the same time. �

Lastly, the following definitions introduce some terminology used in the below results. Following

Modgil and Prakken [23], we define strict continuations in a slightly different way than in [21], but

as noted by [23] this does not affect the proofs stated in [21].

Definition 22 (Strict continuations). Let (A, C) be an AF defined by IG GI and evidence set E. The1235

set of strict continuations of a set of arguments from A is the smallest set satisfying the following

conditions:

1. Any argument A is a strict continuation of {A}.

2. If A1, . . . , An are arguments and S1, . . . , Sn are sets of arguments such that for every i ∈

{1, . . . , n}, Ai is a strict continuation of Si and {Bn+1, . . . , Bm} is a (possibly empty) set of1240

strict arguments, and g : {Conc(A1), . . . ,Conc(An),Conc(Bn+1), . . . ,Conc(Bm)} → p is a

strict generalisation in Ga
s ∪Go

s , then argument A1, . . . , An, Bn+1, . . . , Bm ⇀g p constructed

from A1, . . . , An, Bn+1, . . . , Bm using g by applying step 2b of Definition 9 is a strict continu-

ation of S1 ∪ . . . ∪ Sn.

The maximal fallible sub-arguments of an argument B are those with the ‘last’ defeasible infer-1245

ences in B. That is, they are the maximal sub-arguments of B on which B can be attacked.

Definition 23 (Maximal fallible sub-arguments). Let (A, C) be an AF defined by IG GI and evidence

set E. The set M(B) of the maximal fallible sub-arguments of B is defined such that for any B′ ∈

Sub(B), it holds that B′ ∈M(B) iff:

1. TopInf(B′) is defeasible, and;1250

2. There is no B′′ ∈ Sub(B) such that B′′ 6= B, B′ ∈ Sub(B′′) and B′′ satisfies condition 1.

5.4.3. Proofs

We prove satisfaction of Caminada and Amgoud’s consistency and closure postulates for complete

semantics, which implies satisfaction of these postulates for grounded, preferred, and stable seman-

tics. Caminada and Amgoud [10] also propose postulates for the intersection of extensions and their1255

conclusion sets, but since their satisfaction directly follows from satisfaction of the postulates for

individual extensions, these postulates will not be reconsidered.
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First, a number of intermediate properties are proven. The intermediate result stated in Lemma

2 is identical to Lemma 37 of Modgil and Prakken [21], namely that any strict continuation B of a

set of arguments {A1, . . . , An} is acceptable with respect to S if all Ai are acceptable with respect1260

to a set S . The proof follows similar to Lemma 37 of Modgil and Prakken [21], where alternative

attack is now also considered.

Lemma 2. Let (A, C) be an AF defined by IG GI and evidence set E. Let B ∈ A be a strict

continuation of {A1, . . . , An}, and for i = 1, . . . , n, let Ai be acceptable with respect to S ⊆ A. Then

B is acceptable with respect to S.1265

Proof. Let A be any argument such that (A,B) ∈ C. By Definition 11, A attacks B iff A rebuts

B (on B′), A undercuts B (on B′), or A alternative attacks B (on B′) for some B′ ∈ Sub(B) (see

Definitions 12, 13, and 14). Here, it holds that TopInf(B′) is defeasible; more specifically:

1. By Definition 12, A rebuts B (on B′) iff B′ is of the form B′′1 , . . . , B
′′
n �g p for some

B′′1 , . . . , B
′′
n ∈ A, p ∈ P and hence iff TopInf(B′) is defeasible, and;1270

2. By Definition 13, A undercuts B (on B′) iff there exists an exception arc x ∈ X such that

x : Conc(A)  g and TopGen(B′) = g ∈ Gc ∪Ge ∪Ga
d ∪Go

d. Hence, in constructing B′

step 2b cannot be applied last, as this step can only be applied with strict generalisations

g ∈ Ga
s ∪ Go

s . Therefore, step 2a of step 3 of Definition 9 is applied last in constructing

B′. Thus, the last used inference in constructing B′ is a defeasible deductive inference using1275

TopGen(B′) = g (step 2a of Definition 9) or an abductive inference using TopGen(B′) = g

(step 3 of Definition 9), and hence TopInf(B′) is defeasible, and;

3. By Definition 14, A alternative attacks B (on B′) iff TopInf(B′) is an abductive inference

and hence iff TopInf(B′) is defeasible.

Hence, by definition of strict continuations (Definition 22), it must be that (A,B) ∈ C iff (A,Ai) ∈ C1280

for some (possibly more than one) Ai ∈ {A1, . . . , An}. Specifically, if A does not undercut, rebut

or alternative attack some Ai, then this contradicts that (A,B) ∈ C. Thus, we have shown that if

(A,B) ∈ C, then (A,Ai) ∈ C for some Ai ∈ {A1, . . . , An}. By assumption, Ai is acceptable with

respect to S , thus ∃C ∈ S such that (C,A) ∈ C. Thus, B is acceptable with respect to S . �

The intermediate result stated in Lemma 3 is similar to Proposition 8 of Modgil and Prakken1285

[21]. Compared to Proposition 8 of [21], in which no assumptions are made regarding A, we now

assume that A is defeasible with a strict top inference or that A is strict, as these are the only

cases needed in our proof of Theorem 1. As Modgil and Prakken do not impose any restrictions

on argument construction in their formalism, a result proven by Caminada and Amgoud [10] (i.e.
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Lemma 6 of [10]) can be directly used to complete their proof. Below, we show that the restrictions1290

that are imposed on argument construction in our argumentation formalism based on IGs do not

restrict the construction of strict continuations, and hence that the proof can similarly be completed.

Lemma 3. Let (A, C) be an AF defined by IG GI and evidence set E. Let A,B ∈ A such that B

is defeasible, Conc(A) = −Conc(B). Let A be strict or let A be defeasible with TopInf(A) strict.

Then for all B′ ∈ M(B), there exists a strict continuation A+ of (M(B) \ {B′}) ∪ {A} such that1295

A+ rebuts B on B′.

Proof. Let A be strict or let A be defeasible with TopInf(A) strict. Let B be defeasible with

Conc(A) = −Conc(B). First, note that according to Definition 22 any strict continuation of a given

set of arguments from A is either (1) A if the set of arguments under consideration is {A} (Definition

22, condition 1), or (2) is constructed by applying step 2b of Definition 9 one or more (but finitely1300

many) times (Definition 22, condition 2). As restrictions are imposed on argument construction in

our argumentation formalism based on IGs, we first show that in constructing any strict continuation

A+ of (M(B) \ {B′}) ∪ {A} step 2b of Definition 9 can be applied without restrictions.

Generally, in applying step 2b of Definition 9 an argument C with Conc(C) = p is

constructed from arguments C1, . . . , Cn by strictly deductively inferring p from propositions1305

Conc(C1), . . . ,Conc(Cn) according to Definition 7 using a generalisation g : Conc(C1), . . . ,

Conc(Cn)→ p in Ga
s ∪Go

s . In Definition 7 no constraints are imposed on performing deduction with

strict generalisations g ∈ Ga
s ∪Go

s ; in particular, the only constraint that is imposed is in condition

2 of this definition, where constraints are imposed on performing deduction with defeasible generali-

sations in Ge (i.e. Pearl’s constraint). The only other case in which step 2b of Definition 9 cannot be1310

applied in constructing an argument C using a g ∈ Ga
s ∪Go

s is in case the same g was already used

in the previous construction step to construct an argument C ′ ∈ ImmSub(C), namely by applying

step 3 of Definition 9. Now again consider argument A. By assumption, A is strict or TopInf(A)

strict, and therefore step 3 of Definition 9, which specifies a defeasible inference, could not have

been applied last in constructing A; therefore, no restrictions are imposed on constructing strict1315

continuations A+ of (M(B)\{B′})∪{A} in our argumentation formalism. By assumption, (A, C) is

well defined and, therefore, closed under transposition; hence, by straightforward generalisation of

Lemma 6 in [10] one can construct a strict continuation A+ that continues (M(B)\{B′})∪{A} with

strict inferences and that concludes −Conc(B′). Since by construction of M(B), B′ has a defeasible

top inference and therefore A+ rebuts B′. But then A+ also rebuts B. �1320

The intermediate result stated in Lemma 4 is identical to Lemma 38 of [21].
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Lemma 4. Let (A, C) be an AF defined by IG GI and evidence set E. Let A ∈ A be acceptable with

respect to admissible extension S ⊆ A. Let S ′ = S ∪ {A}. Then ∀B ∈ S ′, neither (A,B) ∈ C nor

(B,A) ∈ C.

Proof. Suppose for contradiction that: (1) ∃B ∈ S ′ such that (A,B) ∈ C. As B ∈ S ′, it follows1325

that B is acceptable with respect to S , as either B = A, which is acceptable with respect to S by

assumption, or B is an element of admissible extension S . Hence, ∃C ∈ S such that (C,A) ∈ C.

Then, as A is acceptable with respect to S , ∃D ∈ S such that (D,C) ∈ C, contradicting S is

conflict-free; (2) ∃B ∈ S ′ such that (B,A) ∈ C. As A is acceptable with respect to S , ∃C ∈ S such

that (C,B) ∈ C, contradicting S is conflict-free. �1330

The result stated in Lemma 5 is identical to Lemma 35-2 of Modgil and Prakken [21], namely

that an argument A attacks an argument B iff A attacks some sub-argument B′ of B. Compared to

Lemma 35-2 of [21], alternative attack is now also considered in the proof.

Lemma 5. Let (A, C) be an AF defined by IG GI and evidence set E. Let A,B ∈ A. Then (A,B) ∈ C

iff (A,B′) ∈ C for some B′ ∈ Sub(B).1335

Proof. By Definition 11, (A,B) ∈ C iff A rebuts B (on B′), A undercuts B (on B′), or A

alternative attacks B (on B′) for some B′ ∈ Sub(B) (see Definitions 12, 13, and 14); hence, also

(A,B′) ∈ C. �

The intermediate result stated in Lemma 6 is identical to Proposition 10 of [21].

Lemma 6. Let (A, C) be an AF defined by IG GI and evidence set E. Let A ∈ A be acceptable with1340

respect to admissible extension S ⊆ A. Then S ′ = S ∪ {A} is conflict-free.

Proof. We need to show that there do not exist B,C ∈ S ′ such that (B,C) ∈ C. As S is an

admissible extension, S is conflict free: hence, there do not exist B,C ∈ S such that (B,C) ∈ C.

Thus, we need to show that (A,A) /∈ C, and neither (A,B) ∈ C nor (B,A) ∈ C for all B ∈ S . As by

assumption A is acceptable with respect to S , this follows directly from Lemma 4. �1345

Theorem 1, corresponding to the direct consistency postulate, states that the conclusions of

arguments in an admissible extension (and so by implication in a complete extension) are directly

consistent. The conclusions of arguments in an extension should not be contradictory, as this leads

to what Caminada and Amgoud call ‘absurdities’ [10, p. 15] in that two contradictory statements

can then be justified at the same time.1350

Theorem 1 (Direct consistency). Let (A, C) be an AF defined by IG GI and evidence set E. Then

for all admissible extensions S of AF it holds that the set {Conc(A) | A ∈ S} is directly consistent.
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Proof. Let S be an admissible extension of AF and let A,B ∈ S . We show that if Conc(A) = q,

Conc(B) = r with q = −r (i.e. {Conc(A) | A ∈ S} is not directly consistent), then this leads to a

contradiction:1355

1. If A is a strict argument, and:

1.1 if B is also a strict argument, then this contradicts our axiom consistency assumption on

evidence sets E;

1.2 if B is a defeasible argument, and:

1.2.1 if B has a defeasible top inference, then A rebuts B (on B) by Definition 12, as a nega-1360

tion arc n : Conc(A) ! Conc(B) exists in N (as q = −r). Hence, this contradicts

S is conflict-free.

1.2.2 if B has a strict top inference, then by Lemma 3 there exists a strict continuation A+

of (M(B) \ {B′}) ∪ {A} for every B′ ∈ M(B) such that A+ rebuts B on B′; hence,

(A+, B) ∈ C. By our Lemma 2, A+ is acceptable with respect to S , and by Lemma1365

6, S ∪ {A+} is conflict-free, contradicting that (A+, B) ∈ C.

2. If A is a defeasible argument and B is a strict argument, then the result follows similar to case

1.2 with the roles of arguments A and B reversed.

3. If A and B are defeasible arguments, and:

3.1 if TopInf(A) or TopInf(B) is defeasible, then the result follows similar to case 1.2.1 (either1370

with the roles of arguments A and B as they currently are or with their roles reversed).

3.2 if TopInf(A) and TopInf(B) are strict, then the result follows similar to case 1.2.2. �

The result stated in Lemma 7 is identical to Lemma 35-3 of [21].

Lemma 7. Let (A, C) be an AF defined by IG GI and evidence set E. Let S ⊆ A and let A ∈ S with

A′ ∈ Sub(A). Then A′ is acceptable with respect to S if A is acceptable with respect to S.1375

Proof. Assume that A is acceptable with respect to S . We need to prove that for every argument

B such that (B,A′) ∈ C, ∃C ∈ S such that (C,B) ∈ C. Let B ∈ A and assume that (B,A′) ∈ C. By

Lemma 5, (B,A) ∈ C. Then, as A is acceptable with respect to S , ∃C ∈ S such that (C,B) ∈ C.

Hence, A′ is acceptable with respect to S . �

Below, Caminada and Amgoud’s [10] closure and indirect consistency postulates are stated.1380

Informally, the closure postulates state that the conclusions returned by an argumentation system

should be ‘complete’ [10, p. 16]. The sub-argument closure postulate states that for any argument

A in a complete extension S , all sub-arguments of A are also in S .

Theorem 2 (Sub-argument closure). Let (A, C) be an AF defined by IG GI and evidence set E. Then
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for all complete extensions S of AF it holds that if an argument A is in S then all sub-arguments1385

A′ ∈ Sub(A) of A are in S.

Proof. Let S be a complete extension of AF, let A ∈ S and let A′ ∈ Sub(A). Then A′ is

acceptable with respect to S by Lemma 7. Then S ∪ {A′} is conflict-free by Lemma 6. Hence, since

S is complete, it holds that A′ ∈ S . �

Theorem 3, corresponding to the strict closure postulate, states that the conclusions of arguments1390

in a complete extension are closed under strict inference.

Theorem 3 (Closure under strict inferences). Let (A, C) be an AF defined by IG GI and evidence

set E. Let S be a complete extension of AF. Then {Conc(A) | A ∈ S} = CL({Conc(A) | A ∈ S}).

Proof. It suffices to show that any strict continuation X of {A | A ∈ S} is in S . By Lemma 2,

any such X is acceptable w.r.t. S . By Lemma 6, S ∪{X} is conflict-free. Hence, since S is complete,1395

it follows that X ∈ S . �

Finally, Theorem 4, corresponding to the indirect consistency postulate, states the mutual con-

sistency of the strict closure of conclusions of arguments in a complete extension.

Theorem 4 (Indirect consistency). Let (A, C) be an AF defined by IG GI and evidence set E. Let S

be a complete extension of AF. Then {Conc(A) | A ∈ S} is indirectly consistent.1400

Proof. The result follows from Theorems 1 and 3. �

To conclude this section, we have shown that instantiations of our argumentation formalism

based on IGs satisfy Caminada and Amgoud’s [10] consistency and closure postulates. Satisfaction

of these postulates warrants the sound definition of instantiations of our argumentation system and

implies that anomalous results as identified by [10] are avoided.1405

6. Related work

In this paper, we have proposed an argumentation formalism based on IGs that allows for both de-

ductive and abductive argumentation and which instantiates Dung’s [14] abstract approach. Earlier

work by Bex [5,6] is related, although only the integrated theory [6] is purely argumentation-based;

the relation to this work was discussed in the introduction. In the hybrid theory proposed by Bex [5],1410

deductive and abductive inference are used in constructing evidential arguments and causal stories,

which are completely separate entities with their own definitions related to conflict and evaluation.

In comparison, our argumentation formalism based on IGs allows for the construction of both de-
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ductive and abductive arguments. Bench-Capon and Prakken [3] offer a formalisation of Aristotle’s

practical syllogism within a logic for defeasible argumentation. This approach allows for reasoning1415

about alternative goals and values to justify actions, which is of an abductive nature. In formalising

this syllogism, the authors only consider the abductive nature of reasoning about desires on the basis

of beliefs and goals, whereas we offer a general account of abductive (and deductive) argumenta-

tion. Booth and colleagues [8] propose a top-down approach by developing a model of abduction in

abstract argumentation [14] and instantiating their approach with abductive logic programs [20]. In1420

comparison to our bottom-up approach, their approach does not allow for mixed abductive-deductive

inference with different types of information.

In defining our argumentation formalism based on IGs, we were inspired by ASPIC+ [21]. Our

argumentation formalism can be regarded as an adaptation of a special case of ASPIC+, which

would among other things require introducing a new form of attack, namely alternative attack, and1425

restricting the manner in which arguments are constructed within this framework.

The argumentation formalism presented in this paper is based on a version of the graph-based

IG-formalism that considers causal and evidential generalisations, abstractions and other types of

generalisations, as well as generalisations including enabling conditions. Most related formalisms for

inference with these types of information are logic-based [5,6,13,18,25,29,34,35] and do not focus on1430

the constraints on performing inference that need to be imposed. The approaches of [18,29,34] only

allow for causal defaults and do not consider defaults including enabling conditions; complications

with reasoning using both causal and evidential defaults as identified by Pearl [26] are thus avoided.

Poole’s Theorist framework [29] allows for both deductive and abductive inference; however, only

causal defaults are considered in this system. The approaches of Ortiz Jr. [25] and Shoham [35] simi-1435

larly only allow for inference with causal rules, but in contrast also include enabling conditions. The

formalisms proposed by Console and Dupré [13] and Bex [5] allow for reasoning with abstractions.

Bex’s hybrid theory [5] does not allow for most types of mixed inference with causal and evidential

generalisations and abstractions, and largely avoids the problems associated with mixed inference as

identified by Pearl [26] and as identified in the current paper. Console and Dupré [13] only consider1440

causal rules and abstractions and not evidential rules.

Graph-based formalisms for reasoning with causality information have also been proposed, no-

tably Pearl’s causal diagrams [27]. Pearl provides a framework for causal inference in which diagrams

are queried to determine if the assumptions available are sufficient for identifying causal effects.

Compared to our IG-formalism and our argumentation formalism based on IGs, this framework does1445

not allow for capturing asymmetric conflicts such as exceptions in the graph. Moreover, causal dia-

grams require probabilistic quantification to be queried, while IGs are qualitative. Pollock’s inference

52



graphs [28], in which arguments are represented as AND trees and sets of such trees are combined

into AND/OR graphs to which attack links are added, are also related to IGs. Compared to IGs,

there is no emphasis on the distinction between the different types of generalisations and inferences.1450

7. Conclusion

In this paper, we have proposed an argumentation formalism that allows for both deductive and

abductive argumentation, the latter of which has received relatively little attention in argumenta-

tion. Our argumentation formalism is based on an extended version of our previously proposed IG-

formalism [39], where in addition to causal and evidential generalisations we now also allow for ab-1455

stractions and other types of generalisations, thereby increasing the expressivity of our IG-formalism.

We have identified conditions under which performing inference with abstractions can lead to un-

desirable results, thereby extending the set of inference constraints imposed by Pearl’s C-E system

for reasoning with causal and evidential information [26]. Moreover, we have identified exceptional

circumstances under which the constraints of Pearl’s C-E system should not be imposed, namely1460

in case enabling conditions are provided under which a generalisation may be used in performing

inference. Based on these constraints and our conceptional analysis of reasoning about evidence,

we have defined how deductive and abductive inference may be performed with IGs. We have then

formally proven that arguments constructed in our argumentation formalism based on IGs indeed

adhere to these constraints. In the paper, we have focused on the constraints that need to be im-1465

posed on performing inference with pairs of generalisations, which cover Pearl’s original constraints

and local constraints on performing inference with abstractions. In future work, additional inference

constraints may be imposed for longer chains of inferences involving more specific combinations of

generalisations, granted that the total set of constraints is consistent. Furthermore, as causality is

a contentious topic, our argumentation formalism may be extended in future work by allowing for1470

meta-argumentation about labels of generalisations, as well as other elements of IGs.

Besides allowing for rebuttal and undercutting attack, which are among the types of attacks

that are typically distinguished in structured argumentation [21,28], we have also defined the notion

of alternative attack among arguments based on IGs, a concept based on the notion of competing

alternative explanations that is inspired by [3,6]. Alternative attack captures a crucial aspect of1475

abductive reasoning, namely that of conflict between abductively inferred conclusions [18]. We have

contributed to the literature on computational argumentation by allowing for the formal evaluation

of arguments involved in this type of conflict. Moreover, we have shown that instantiations of our

argumentation formalism satisfy key rationality postulates [10], which warrants the sound definition
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of instantiations of our argumentation system and implies that anomalous results such as issues1480

regarding inconsistency and non-closure as identified by [10] are avoided.

Our argumentation formalism generates an abstract AF as in Dung [14] and thus allows argu-

ments to be formally evaluated according to Dung’s argumentation semantics. By formalising anal-

yses performed by domain experts using the informal reasoning tools they are familiar with (e.g.

mind maps) as IGs as an intermediary step, this allows for the evaluation of IGs using computational1485

argumentation, as well as using other formal systems such as BNs [39].
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