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Abstract

We propose an approach to faithfully explaining text classifi-
cation models, using a specifically designed neural network to
find explanations in the form of machine-annotated rationales
during the prediction process. This results in faithful explana-
tions that are similar to human-annotated rationales, while not
requiring human explanation examples during training. The
quality of found explanations is measured on faithfulness,
quantitative similarity to human explanations, and through a
user evaluation.

1 Introduction
Explainable artificial intelligence (XAI) is concerned with
explaining the behavior of AI systems (e.g. machine learn-
ing (ML) models). Explaining and understanding black box
models, like deep neural networks, is a difficult task (Miller,
Howe, and Sonenberg 2017; Kindermans et al. 2019). Of-
ten, post-hoc explanations are constructed after the predic-
tion has been made based on just the input and output of
a model. Such post-hoc explanations might be feasible or
plausible, but they are not faithful explanations in that they
correctly reflect the exact inner workings of a model (Jacovi
and Goldberg 2020; Rudin 2019). Particularly in sensitive
work fields like the legal and medical domain (Berk et al.
2018; Tjoa and Guan 2020), we need faithful explanations
to give us meaningful agency – the explanations should not
just allow us to passively understand a model or decision,
but also to actively challenge, debug and change critical ML
models (Jacovi and Goldberg 2020; Lipton 2018).

We focus on explaining text classification models. A
text can contain words or (sub)sentences that form human-
understandable natural language explanations for a classifi-
cation, called rationales (Ehsan et al. 2019). In deciding if
documents are positive or negative for instance, parts of the
text can be used as rationales for the prediction of the doc-
ument class. The sentence “I simply hated it” in a review
would support a prediction that the review is negative, and
this sentence consequently can be used as a rationale sup-
porting this prediction.

When a human classifies a text and annotates parts of text
to support the classification, we talk about annotator ratio-
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nales (Zaidan, Eisner, and Piatko 2007). The use of annota-
tor rationales in AI has proved to be useful in both explain-
ing and improving classification accuracy of ML models,
(Ehsan et al. 2019; Zaidan, Eisner, and Piatko 2007; Zaidan
and Eisner 2008; Zhang, Marshall, and Wallace 2016; Bao
et al. 2018). Gathering annotator rationales however requires
humans to make and annotate (large numbers of) classifica-
tions, and these resources are not always available.

ML models can construct machine-generated rationales
from annotator rationales (Zhang, Marshall, and Wallace
2016; Yessenalina, Choi, and Cardie 2010; Lei, Barzilay,
and Jaakkola 2016; Robnik-Šikonja and Kononenko 2008).
Usually, these machine-generated rationales are generated
independently from the classification task, and do not ex-
plain a model’s reasoning for a classification. Furthermore,
human example rationales are often required when training
the model. In this work, we propose a novel method for
constructing machine-generated rationales that faithfully ex-
plain text classification tasks without requiring human ex-
amples. We extract relevant parts of the input while classi-
fying text, that form an explanation for that specific classi-
fication. We call these explanations machine-annotated ra-
tionales (MaRs), as they are annotated (sub)sentences by the
model that explain a classification. Our model does not post-
hoc explain using human examples, but finds faithful ratio-
nales without learning from annotator rationales, during the
prediction process. These machine-annotated rationales can
be used 1) as explanations for the model’s predictions, 2) to
gain insight in the model’s inner workings. We use the term
‘inner workings’ to describe the complete algorithmic pro-
cess that was executed by the ML model to transform input
to output.

We evaluate our machine-annotated rationales on three
different aspects: Faithfulness is measured using the com-
prehensiveness and sufficiency metrics (DeYoung et al.
2020). Quantitative similarity to annotator rationales is mea-
sured using set theory. A user evaluation is used to find out
whether machine-annotated rationales are useful for human
users.

This work is outlined as follows: Related work is dis-
cussed in Section 2. This is followed by a description of the
dataset and prepossessing steps in Section 3 and Section 4.
Then, in Section 5, we describe two implementations of the
model. The evaluations metrics and results are discussed in



Section 6. We conclude our work in Section 7.

2 Related work
Different approaches to generating explanations for text
classification model have been proposed in literature.

Input eSrasure Determining which parts of the input are
relevant for a classification can be done by removing parts
and measuring the effect on the classification. This method
is called erasure (Li, Monroe, and Jurafsky 2016). For this
approach, it is assumed that different parts in the input are
independent of each other and influence a prediction. This
assumption is referred to as the Linearity Assumption in lit-
erature (Jacovi and Goldberg 2020). The Linearity Assump-
tion can be applied to find or validate ML model explana-
tions: Robnik-Šikonja and Kononenko (2008) find expla-
nations for predictions by removing words from the input
and measuring the effect on the prediction. DeYoung et al.
(2020) evaluate the faithfulness of found explanations by re-
moving explanations from the input and measuring their in-
fluence on the prediction.

Saliency methods and the attention mechanism
Saliency methods can be used to find explanations,
but may be unfaithful. Kindermans et al. (2019) show
that saliency methods, where insight is gathered in what
features in the input played an important role in a model’s
prediction, are not always consistent in faithfulness. Such
methods can nevertheless help gain intuitions about the
workings of neural networks (Kindermans et al. 2019).
The attention mechanism, introduced by Bahdanau, Cho,
and Bengio (2015), is based on the idea that often only
part of the input is relevant for a prediction. The attention
mechanism assigns weights to parts of the input to compute
a representation, and the parts receiving high weights are
sometimes used to explain predictions. However, whether
these parts of the input are (faithful) explanation for the
prediction, remains undetermined (Jain and Wallace 2019;
Wiegreffe and Pinter 2019).

Annotator rationales Zaidan, Eisner, and Piatko (2007)
propose explanations in the form of (sub)sentences anno-
tated by humans, called annotator rationales. These anno-
tator rationales are then used to improve classification ac-
curacy (Zaidan, Eisner, and Piatko 2007; Zaidan and Eisner
2008). Teaching a CNN to first recognize rationale sentences
using human examples, and then exploit these sentences,
increases accuracy and provides explanations (Zhang, Mar-
shall, and Wallace 2016). Bao et al. (2018) use annotator ra-
tionales to guide a high-quality attention mechanism, with-
out having to train the model on a large dataset. Annotator
rationales can be seen as human attention and compared to
machine attention mechanisms, which show significant sim-
ilarity (Sen et al. 2020). ML models can generate rationales
for polarity classification by determining the polarity of sen-
tences in a text, as shown by Yessenalina, Choi, and Cardie
(2010). Ehsan et al. (2019) train a model on annotator ra-
tionales to generate rationales for predictions, and evaluate

through a user study. All previously mentioned rationales are
not faithful explanations however, since they are generated
post-hoc or separately from the classification task.

Recent work by Jain et al. Jain et al. (2020) propose a
method to faithfully identify rationales. Compared to our
work, their approach uses an encoder-decoder, where the en-
coder requires annotator rationale examples to recognize po-
tential rationales.

3 Dataset
The dataset used for training and finding rationales is the
IMDB1 movie review dataset enriched with annotator ratio-
nales by Zaidan, Eisner, and Piatko (2007)2. This dataset
is chosen because it is often used in research on expla-
nation through rationales (DeYoung et al. 2020) and con-
tains straightforward rationales, which allows for user eval-
uation on a large target audience (everyone that can read
English texts). The dataset consists of 1000 positive and
1000 negative textual reviews on movies from the polarity
dataset (v2.0) from the Movie Review Dataset by Pang and
Lee (2004). The enriched dataset contains annotator ratio-
nales annotated by human annotators. These annotators were
asked to highlight words and phrases that justified a given
positive or negative classification. Only rationales for the re-
quested classification were required. The number of ratio-
nales selected depended on the annotator, who was requested
to mark enough rationales to provide convincing support for
the class of interest.

The average number of rationales annotated per document
is 8.55. In this study, the whole sentence around the rationale
is used as rationale, to reduce computational cost. The aver-
age number of rationales is therefore reduced to 8 per docu-
ment, which can be explained by the occurrence of multiple
rationales in the same sentence.

We split the dataset into multiple balanced sets for train-
ing (1200), tuning (200), testing (400), and user evaluation
(200). The user evaluation set does not contain annotator ra-
tionales and is therefore used in the user evaluation.

4 Preprocessing
We preprocess the dataset as follows: Documents are
split into sentences using the NLTK English punkt to-
kenizer3(Loper and Bird 2002). The annotation tags
(<POS></POS> and <NEG></NEG>) are removed
from the text. All other words and punctuation except for
repeating dots (...) are left in the documents.

Sentences are embedded using the Sentence-BERT
(Reimers and Gurevych 2019) embedding model. This em-
bedding model encodes specifically on sentence-level and
therefore overcomes limitations of regular Bidirectional En-
coder Representations from Transformers (BERT) models
(Devlin et al. 2019). Sentence-BERT uses the BERT model
to encode text and applies pooling to the output to derive
semantically meaningful fixed size sentence embeddings

1Internet Movie Database (Miller, Vandome, and McBrewster
2009)

2https://www.cs.jhu.edu/∼ozaidan/rationales/
3tokenizers/punkt/english.pickle



(Reimers and Gurevych 2019). Every sentence is embed-
ded as a vector of size 768. Every document is padded with
as many sentences as needed to create similar-sized docu-
ments. All documents are transformed into a format based
on the dimensions of the longest document in the dataset.
The longest document in the dataset contains 116 sentences,
and therefore every document is transformed to 116 vectors
with a length of 768.

5 Model
To find faithful explanations in the form of machine-
annotated rationales, the following approach is taken. Our
work builds on BagNets by Brendel and Bethge (2019), who
determine the contribution of chunks of images to a classifi-
cation. We apply this bag-of-features concept to text classi-
fication.

We train a neural network to solve the classification task
that uses Sentence-BERT embeddings as input, with Binary-
Cross-Entropy loss and the ADAM (Kingma and Ba 2015)
optimizer. Every sentence in the text is an input feature. Sen-
tences that strongly contribute to a prediction form machine-
annotated rationales.

We propose two variations of the model. The first varia-
tion uses all sentences (BagOfSentences) in the text, and the
second variation uses a subset of sentences marked by the
model as machine-annotated rationales (BagOfRationales)
to base a prediction on. In Figure 1 a visualisation of both
model variations is given.

5.1 BagOfSentences model
Our BagOfSentences (BoS) model uses an architecture sim-
ilar to the BagNets (Brendel and Bethge 2019) architecture:
the classification is done by dividing the input into multi-
ple chunks. Then, the outputs of all chunks are combined
to find a final prediction. The chunks are in the format of
sentences. The bag-of-features concept is implemented as a
bag-of-sentences in the BagOfSentences model.

In the BagOfSentences model, every Sentence-BERT em-
bedded sentence in the document is passed through multiple
convolutional layers, which are at the end passed through a
linear layer. This linear layer gives one output for every sen-
tence in the document. To make a prediction, the output for
all sentences (116 outputs, see Section 4) are put through a
sigmoid function, and the average of those values is used to
decide the class. Eq. (1) shows the formula for the final pre-
diction µ by the BagOfSentences model, where S is the set
of sentences, Ŝ is the output of the BagOfSentences model
and pred : s → ŝ is the bijective function of the prediction
ŝ ∈ Ŝ for sentence s ∈ S. Note that the padding is also
included in S.

µ = predBoS(S) =

∑
s∈S pred(s)

‖S‖
=

∑
ŝ∈Ŝ ŝ

‖S‖
(1)

For the BagOfSentences model, the following steps are
taken:

1. Input the Sentence-BERT embedded vectors.

2. Transpose the 116 × 768 tensor to 768 × 116 tensor for
the convolutional layers4.

3. Pass through 6 1D convolutional layers5, consisting of
768 input channels and 768 output channels. The used
kernel size is 1, which moves along (but does not merge)
sentences. The activation function used is ReLU(Agarap
2019).

4. Transpose the 768×116 tensor back to a 116×768 tensor
for the linear layer.

5. Use a linear layer with 768 inputs and 1 output to generate
a single output ŝ for each sentence.

6. Use the sigmoid function on all 116 sentence outputs ŝ ∈
Ŝ to obtain a class value for every sentence.

7. Take the average µ of all sentence outputs Ŝ.
8. Compare the µ with the class label and use this to update

the model’s gradients. The µ is the final prediction.
The training process of the BagOfSentences model differs

from the BagNets model by Brendel and Bethge (2019), in
that the BagNets model is trained to predict using small im-
age chunks, where every chunk receives feedback during the
training process. Thus, a label for every chunk is available
in the used dataset. Instead of training the BagOfSentences
model to classify independent sentences, we only use the
polarity of whole documents as feedback. This feedback is
given after the final prediction is made, so after all sentence
chunks are combined. Thus, the BagOfSentences learns the
polarity of sentences, with the document class as a label. In
a way, the model trains on noisy labels, because the class
label does not apply to all input sentences, like padding or
neutral sentences.

5.2 Extracting machine-annotated rationales
Selecting sentences that form machine-annotated rationales
rationales can be done by for example taking the top t ra-
tionales, where t is the average number of annotator ratio-
nales in all documents in the training dataset (DeYoung et al.
2020), or a fixed percentage of the sentences in the document
(Jain et al. 2020).

In this study, a different approach to find a variable num-
ber of machine-annotated rationales is used: Sentences are
compared to the full distribution of all sentences in the doc-
ument. This is done by creating a histogram of the distribu-
tion with n bins, and only selecting sentences in the leftmost
or rightmost bin as rationales. Both sides of the histogram
represent a class in a binary classification task. The number
of bins n is determined by the bin-size: #bins = 1/bin-size,
and can be adjusted per model. A bin-size of 0.1 for instance
would result in 10 bins. Using this approach, only sentences
that show a considerable support for a class are selected as
rationales, instead of a fixed set of more-or-less support-
ing sentences. Using this approach, machine-annotated ra-
tionales can be extracted from the BagOfSentences model.

4The number 116 is the maximum number of sentences in all
documents in the dataset and 768 is the length of the Sentence-
BERT vectors.

5The number 6 is chosen because of a time-accuracy trade-off
during development.



These machine-annotated rationales form faithful explana-
tions for predictions, because these sentences directly influ-
ence the prediction, and removing these sentences would al-
ter the prediction.

The following steps are taken to find machine-annotated
rationales:

1. Perform the steps described in Section 5.1 up to step 7.
2. Compare the sentence-values to the average of all

sentence-values (the prediction). Select all sentences that
have an output that is ≤ (positive prediction), or ≥ (neg-
ative prediction) than a threshold. Those sentences are
treated as the machine-annotated rationales. The thresh-
old is found using the distribution of the logits in the
model’s output and a bin-size of 0.26, as described above.

5.3 BagOfRationales: BagOfSentences with
restricted input

Not all sentences in a preprocessed document are useful for
polarity classification. For example, a padding sentence does
not contain any information, and some sentences can be neu-
tral. We introduce the BagOfRationales (BoR) model as a
variation of the BagOfSentences model, where instead of
using all sentences, only the sentences marked as relevant
(rationales) are used to make the final prediction. After step
6 in the BagOfSentences model, continue as follows:

7. Take the average µ of all sentence outputs.

(a) Find sentences that support7 the found prediction
(rounded µ). These are the machine-annotated ratio-
nales R for the given prediction.

(b) Take the average µ̂ of R.

8. Compare the µ̂ with the class label and use this to update
the model’s gradients. The found µ̂ is the final prediction.

By adding these steps, the final prediction µ̂ will be closer
to the class label than the prediction made by the BagOf-
Sentences model, since only the sentences with values that
(strongly) support the prediction µ are used. Sentences with
different logits, like padding, will bring the prediction closer
to 0.5, because they average the other sentences out.

See Eq. 2 for the formula used to calculate the final pre-
diction µ̂, where S is the set of sentences, pred : s → ŝ is
the bijective function of the prediction ŝ for sentence s ∈ S,
and R is the set of selected rationales.

µ̂ = predBoR(S,R) :

∑
s∈S{pred(s)|s ∈ R}

‖R‖
(2)

6 Evaluation and discussion
In this section, we present the approach and results of our
evaluation. We focus on the quality of explanation, and not
on classification accuracy. As a baseline, a set of a (positive)

6The number 0.2 is chosen arbitrarily and needs to be finetuned
per dataset.

7The sentences that fall in the top 20% of the distribution for
the given class, see Section 5.2.

Figure 1: The BagOfSentences and BagOfRationales model
architecture. The area in the square marks the additional
steps taken in the BagOfRationales model.

random number of randomly selected sentences is used a
rationales. This set is called the random rationale set.

The found machine-annotated rationales are evaluated by
measuring their faithfulness, comparing them to annotator
rationales using set theory, and through a user evaluation.

6.1 Classification
Current state-of-the-art models on this classification task
achieve accuracies above 95% (Thongtan and Phienthrakul
2019). The BagOfSentences model reaches a classification
accuracy of 0.888, and the BagOfRationales model an ac-
curacy of 0.847 on the test set. The BagOfRationales model
uses less information to base a classification on (only ratio-
nales), which can explain the decrease in classification ac-
curacy of this model. When relevant information is removed
from the input, the classification accuracy decreases.

6.2 Faithfulness
An explanation is faithful when it explains according to the
inner workings of a model. We measure the faithfulness of
found machine-annotated rationales using the comprehen-
siveness metric proposed by DeYoung et al. (2020): Every
sentence that is labelled as a machine-annotated rationale
is replaced by padding, and the resulting document is used
as input for the new prediction. The difference between the
original prediction probability and the adjusted prediction
probability is called the comprehensiveness. Removing ra-
tionales should result in a high comprehensiveness score. We
do not use a fixed number of ranked rationales like DeYoung
et al. (2020), but use the approach as described in Section 5.2
to select rationales. In addition, we use the sufficiency met-
ric proposed by DeYoung et al. (2020), which removes all
sentences that are not in the selected set of rationales from
the input, and compares the new prediction to the original
one. We interpret a low sufficiency score as a sign that the
model mainly uses the selected rationales in the prediction
and thus explain the prediction. We use normalized predic-



Rand.
+ BoS

Rand.
+ BoR

BagOfSentences
(BoS)

BagOfRationales
(BoR)

total total total corr. incorr. total corr. incorr.
# docs 400 400 400 355 45 400 339 61
Comp. 0.066 0.135 0.138 0.139 0.108 0.569 0.544 0.705
Suff. 0.069 0.133 0.039 0.035 0.06 0.047 0.045 0.059

Table 1: Comprehensiveness and sufficiency for BagOf-
Sentences and BagOfRationales models on the test set. A
distinction between rationales for correctly classified docu-
ments (correct) and incorrectly classified documents (incor-
rect) is made. Random rationales (rand.) are used as a base-
line.

tions in both the comprehensiveness and sufficiency metrics
to compare models.

Results See Table 1 for the faithfulness scores of the
BagOfSentences and BagOfRationales models. The base-
line of randomly selected rationales is used to give an in-
dication of faithfulness scores. The comprehensiveness is
higher for the BagOfRationales model. One explanation
for this difference in comprehensiveness scores is that the
BagOfRationales classifies using only rationales, and re-
moving rationales therefore changes the prediction more no-
tably. The sufficiency metric is similarly low for both mod-
els, showing that both models do not use most of the non-
rationales in their prediction.

6.3 Comparison to annotator rationales
We now compare the machine-annotated rationales to hu-
man annotator rationales. Annotator rationales form a
benchmark of interpretable explanations for this classifica-
tion task, since they are explanations by humans for humans
and therefore very interpretable to humans. These explana-
tions are subjective and may vary per annotator (Bao et al.
2018). DeYoung et al. (2020) evaluate found rationales by
measuring how much they agree with human rationales. We
adopt their metrics, but compare rationales on sentence-level
instead of token-level. We use the Jaccard Index to measure
the overlap between two sets of rationales. This measure is
sometimes called Intersection-Over-Union (IOU) (DeYoung
et al. 2020). In addition, we use sentence-level precision, re-
call, and F1-score to measure the similarity of annotator- and
machine-annotated rationale sets.

Results Our results are presented in Table 2. The machine-
annotated rationales found by the BoS and BoR models are
quite similar, with an average Jaccard index of 0.678. On
average, the sets of machine-annotated rationales contain
fewer rationales than the set of annotator rationales. In Ta-
ble 1 on the Github page8 an overview of the average number
of selected rationales per set is given. A difference between

8https://git.science.uu.nl/e.herrewijnen/machine-annotated-
rationales

Random
rationales

BagOfSentences
(BoS)

BagOfRationales
(BoR)

total total corr. incorr. total corr. incorr.

# docs 400 400 355 45 400 339 61
Jacc. 0.171 0.326 0.361 0.052 0.316 0.362 0.060
Prec. 0.226 0.546 0.603 0.102 0.550 0.629 0.110
Rec. 0.505 0.448 0.483 0.085 0.405 0.460 0.098
F1 0.312 0.492 0.536 0.092 0.466 0.531 0.103

Table 2: Rationale quality for random rationale baseline,
BoS, and BoR rationales compared to annotator rationales.
A distinction between rationales for correctly classified doc-
uments (correct) and incorrectly classified documents (in-
correct) is made.

correct and incorrect classifications by the models and simi-
larity to annotator rationales is visible: the similarity scores
for correctly classified are much better than for incorrectly
classified documents (see Table 2). This difference indicates
that when a ML model predicts in a way that results in the
same classification result as a human classification (i.e. cor-
rect), the explanation is more similar to a human explana-
tion. We select machine-annotated rationales that stand out
relatively to the distribution of all sentences. This way, only
the sentences that have a clear influence on the prediction
are selected as rationales. The found machine-annotated ra-
tionales are more concise (i.e. contain fewer sentences) than
annotator rationales, and occasionally too concise in the user
evaluation. Increasing the bin-size might improve the preci-
sion of the found MaRs, but decrease recall since the chance
of selecting non-annotator rationales also increases.

6.4 User evaluation
Since explanation is subjective (Bao et al. 2018), we use
a user evaluation to measure the usefulness of machine-
annotator rationales. Ehsan et al. (2019) evaluate post-hoc
generated rationales by asking users to score explanations
on confidence, human-likeness, adequate justification, and
understandability.

We measure the quality of our selected rationales using
a blind study, where users do not know the source (human
or ML model) of the explanation. By doing this, the useful-
ness of the found rationales as explanation can be measured
without potential user bias9 for the explanation source. Our
user study consisted of 45 users (students and colleagues)
that classified one or two10 sets of machine-annotated ratio-
nales for one of 8 different documents. Users were asked to
voluntarily fill out an online survey.

Users first perform a sanity check to find out whether they
understand the concept of annotator rationales, where they
have to select all sentences in a document that form ratio-
nales. This document contains a set of obvious rationales,
which forms a baseline for the sanity check. Then users are
presented with a set of rationales (annotator rationales or

9E.g. humans are better at explaining than ML models.
10More sets of machine-annotated rationales where compared in

the blind study, but their results are not relevant for this study.



machine-annotated rationales) without knowing their source
(human or ML model), and asked to make a classification
based on the given explanation. This approach is similar
to forward simulation (Doshi-Velez and Kim 2017; Nguyen
2018), but uses only explanation as a classification base, in-
stead of using the input and the explanation. We call this task
the blind study task. Users have three options for classifying
a document after being presented with a set of rationales: 1)
Positive, 2) Negative, 3) I need more information. These op-
tions reflect whether a user understands an explanation and
whether all the required information is present in the expla-
nation. When the user’s prediction agrees with the model’s
prediction, the explanation is understood. When the predic-
tions disagree, the explanation is misleading. When a user
needs more information, a prediction does not contain re-
quired information.

Only machine-annotated rationales found by the
BagOfRationales model are used, since these rationales
scored higher on the comprehensiveness metric, but are not
very different from the BagOfSentences rationales (Jaccard
index of 0.678). To gain insight in cases where a ML
model predicts differently from a human, we also presented
users with machine-annotated rationales for a subset of
incorrectly classified documents.

Results In Figure 2 the results of the blind study task are
presented. As a benchmark, annotator rationales were also
used in the blind study task. For correct classification by the
ML model, the percentage of correct classifications by users
should be as high as possible. Incorrect and incomplete clas-
sification by users imply that the explanation is respectively
misleading and incomplete.

In cases where the ML model makes a wrong classifica-
tion, the model predicts differently than humans. Then, the
percentage of correct user classifications indicates that the
given explanation does not reflect the model’s prediction.
Alternatively, an incorrect classification shows that the ex-
planation does reflect and support the model’s prediction.
A high percentage of classifications marked as incomplete
shows that the given explanation does not contain enough
information for the user to base a classification on. A high
percentage of incorrect classifications implies that the expla-
nation supports the model’s prediction. These results show
that the found machine-annotated rationales are mostly use-
ful when the model classifies correctly. Thus, when the mod-
els predicts somewhat similarly to a human, the explana-
tions found are interpretable to humans. When the model
made a wrong classification, the users marked the machine-
annotated rationales as incomplete most often. If the model
predicts differently (incorrectly) from a human, the found
explanation does not help users to understand why an action
has been performed. Guaranteeing that a model predicts sim-
ilarly to a human and comes to the same classification result
can make found explanations more interpretable.

7 Conclusion
We proposed two models that faithfully identify rationales:
BagOfSentences and BagOfRationales. We showed that us-

Figure 2: User-classifications based on machine-annotated
rationales. Left: correct model classifications (37 docu-
ments). Center: incorrect model classifications (12 docu-
ments). Right: annotator rationale classifications (43 docu-
ments).

ing a bag-of-features approach for text classification can
bring relevant parts of text to the surface, which can be used
as explanation. Finding these machine-annotated rationales
does not require human explanation examples during the
training process. Furthermore, the extraction of machine-
annotated rationales is done during the prediction process,
which makes the method computationally inexpensive.

Found machine-annotated rationales show some overlap
with annotator rationales, especially when the ML model
reasons somewhat similar to humans (i.e. correct classifi-
cations). Using annotator rationales as a rationale quality
benchmark might be a very ambitious benchmark.

User evaluation results show that found machine-
annotated rationales can be useful as explanation, even
though they are more concise and occasionally found in-
complete by users. By using a blind study approach, the
machine-annotated rationales can be compared to annotator
rationales, without requiring user to have experience with
explainable artificial intelligence.
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