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Abstract—Relation extraction from text is a well-known and
extensively studied topic in Natural Language Processing re-
search. However, the implementation of relation extraction
approaches in real-world application scenarios raises various
methodological considerations which are often left implicit in
existing research. This paper explores these considerations using
a real-world dataset of user-generated police reports in Dutch.
The use of linguistic features based on dependency trees is
investigated, including an ablation analysis of the importance
of individual features. The construction of negative examples for
machine learning models is discussed, as well as the construction
of a baseline model. The methodological implications of using
a small dataset are discussed in terms of the design and
performance of a Long Short Term Memory network as well
as a Support Vector Machine. In general the models perform
well, however the definition of the classification task, and in
particular the construction of negative examples, are shown to
have a large impact on classification accuracy and subsequently
on the interpretation of the evaluation results.

I. INTRODUCTION

Relation extraction, defined as finding instantiations of
specific semantic relations between entities in text, has ap-
plications in various text processing tasks such as summariza-
tion, reasoning, and sentiment analysis. This paper addresses
methodological considerations for the relation extraction task
based on a case study of Dutch web form data in the legal
domain. Although relation extraction has been investigated
extensively in previous research, the implementation of this
research in a real application setting raises several considera-
tions regarding the definition of the task and evaluation of the
performance. In this paper the following issues are discussed:

1) Section III: which task is addressed by a relation ex-
traction approach? What are the prerequisites for this
task?

2) Sections IV,VII: are dependency tree features useful for
relation extraction in noisy user-generated data?

a) Is the performance of state-of-the-art tools for
Dutch on this type of data sufficient to extract
features from data?

b) Section VII-A1: which features are most useful for
this task?

Note: the term dependency tree features refers to the
sequence of token-level features generated for a particu-
lar pair of tokens by computing the dependency tree for

I would like to report fraud. I recently saw a bicycle for
sale at an online trading platform and contacted advertiser
John Doe. Because he said that he lived in a different part
of the country, we agreed that he would send the bicycle
to my home address in Amsterdam. I paid him in good
faith but still have not received the bike. Mr. Doe does
not respond to my e-mails any more. I did some research
and saw that there is a second user called John Doe, but
that person claims to live in Amsterdam and uses another
account number.

Fig. 1. Example document from the crime report dataset with relation
annotations (adapted, translated and anonymized for presentation purposes).

a sentence and extracting the dependency path between
the tokens. This procedure and the dependency parser
used in the experiments are described in Section IV.

3) Section V: which methods can be used for realistic
negative sampling of relation examples?

4) Section VI: what is a good baseline for this task?
5) Section VII: how do standard machine learning algo-

rithms behave for a small amount of data?

a) Which architecture can be used for different ma-
chine learning methods?

For the case study manual annotation has been performed on a
dataset for a single type of relation, i.e., residency (John lives
in Miami). An example document is shown in Figure 1. Using
the results of the current research, other types of relations can
be added in future work. The issues investigated in this paper
are centered around the specific nature of the dataset, i.e., un-
moderated, user-generated, noisy, short texts, in Dutch, in the
legal domain. This research therefore explicitly does not aim
to provide a general comparison between relation extraction
methods, or to benchmark the performance of methodological
adjustments using well-established datasets such as MUC or
ACE. Instead, the research aims to provide an overview of
issues and methodological aspects that need to be addressed
for the task of relation extraction on datasets containing this
type of data, and to provide a case study for this task using
well-known machine learning algorithms.



II. RELATED WORK

The task of relation extraction has been studied extensively
as a subtask of information extraction. Early approaches
used domain-specific pattern matching [1], [2]. Facilitated by
shared tasks such as MUC [3], ACE [4] and SemEval [5],
domain-independent approaches have been developed using
statistical machine learning. Models have been trained using
shallow linguistic features such as suffixes, capitalization or
sentence position of words [6] or POS features [7]. Based
on the assumption that semantic relations are correlated with
syntactic structure, various approaches are developed using
dependency relations as a feature. Different algorithms have
been applied, such as Maximum Entropy models [8], Support
Vector Machines [9], [10], and more recently neural network
models using word embeddings, such as convolutional neu-
ral networks [11] and Long Short Term Memory networks
[12], [13], [14]. Performance comparisons (in, e.g., [12] and
[15]) show that, although neural network approaches generally
achieve high accuracy, the selection of features has a relatively
large influence on model accuracy compared to the selection of
the learning algorithm. Moreover, neural networks are assumed
to require a relatively large training set for convergence
compared to other machine learning algorithms [16], [17],
[18], parameter settings for complex networks are non-trivial,
and computational cost may be prohibitive. Furthermore, using
word embedding features requires either a set of pre-trained
vectors for the target language, or an additional network layer
for training custom vectors within the dataset which may
increase the amount of data necessary for convergence. As one
of the goals of the current research, this issue is investigated
in more detail.

III. TASK DEFINITION

For supervised classification approaches a training set needs
to contain examples for all predefined classes. In commonly
used datasets generally several types of relations are anno-
tated (e.g., SemEval 2010 contains 10 different relation types
such as cause–effect, component–whole, message–topic). This
means that a positive example for a particular relation can be
used as negative example for other relations. However, in case
the dataset contains only examples of a single class (such as
the current case study, see Section IV), the relation extraction
task needs to be extended with a methodology to construct
explicit negative examples to provide as training data. The
task of constructing negative examples is non-trivial, given
that the negative examples should be similar to the positive
examples in order to train a practically useful classifier, while
the negative examples should not be too similar, which would
prevent a classifier from finding a decision boundary. In
Section V methods for constructing negative examples are
discussed in detail.

A further issue relates to the general scope of the rela-
tion extraction task. Existing approaches generally consider
the task of classifying given pairs of entities. However, the
selection of entity pairs from a document to present to the
classifier (i.e., the information retrieval aspect) is usually not

alleen die persoon zegt in Amsterdam te wonen
but that person claims to live in Amsterdam

4. zegt
[says]

3. persoon
[person]

2. die
[that]

1. alleen
[only]

5. in
[in]

6. Amsterdam
[Amsterdam]

7. te
[to]

8. wonen
[live]

Fig. 2. Dependency tree for a (partial) example sentence, containing the
residency relation (person,Amsterdam).

addressed by existing approaches. This issue can be irrelevant
for a number of reasons, e.g., the entities can be trivially
produced from a list (such as protein or drug names), or by
an algorithm for named entity recognition, or given as a query
by a human user, or simply assumed to be given in a research
context. However, for real-world applications, entities may
not be known in advance and the identification of potential
entities may not be trivial, for example because the entities
are not necessarily named entities (e.g., the man lives near the
country border). The task definition therefore changes from
classifying predetermined pairs of entities to identifying and
classifying candidate relation pairs in non-annotated text. Note
that the retrieval aspect has been investigated in closely related
research areas such as temporal information processing [19].
Results from such tasks show that the retrieval aspect is indeed
a significant component of the task, with F1-scores ranging
from around 0.3 on raw text to around 0.5 when candidate
pairs are given.

The issue of identifying elements of a relation can be ad-
dressed by generating candidates from text. A model trained on
these candidates (and evaluated using classification accuracy
on a balanced test set) can be applied on a new document by
generating all candidates in that document and classifying each
candidate. The number of candidates can become very large,
which is both a practical issue as well as a theoretical problem
in selecting representative negative examples for training. A
restrictive heuristic can be applied to limit the number of
candidates, as detailed in Section V. A further discussion of the
use of a selection heuristic for training examples is provided
in Section VIII.



translation only that person says in Amsterdam to live
surface alleen die persoon zegt in Amsterdam te wonen
lemma alleen die persoon zeggen in Amsterdam te wonen
full POS ADV() PRON(sg,demonstr,nom) N(sg,common,gendered) V(pres,sg) PREP(init) SPEC(name) PREP(init) V(inf)
main POS adverb pronoun noun verb preposition special preprosition verb
named entity - - - - - location - -
chunk ADVP NP NP VP PP NP VP VP
direction → → → ← ← ← ← ←

TABLE I
TOKEN FEATURES FOR THE EXAMPLE SENTENCE IN FIGURE 2.

alleen die persoon zegt in Amsterdam te wonen en geeft een ander rekeningnummer
only that person says in Amsterdam to live and gives an other account number
advp { np } vp pp np { vp } conj vp { np }
but that person claims to live in Amsterdam and provides another account number

candidates N1 for dependency
path length 4 (11 in total)

only–says, that–in, that–and, person–Amsterdam, person–gives,
says–to, says–account number, in–live, in–gives, and–in, and–other

relation marker live (wonen)
allowed chunk types NP, ADVP, ADJP, SBAR, unlabeled
candidates N2, window size 5
(20 in total)

person–Amsterdam, Amsterdam–person, person–an, an–person, ...,
other–account number, account number–other

Fig. 3. Example generation using methods N1 and N2. A positive training example is shown in bold, all other pairs are negative examples.

IV. CASE STUDY

A set of user-submitted crime reports in Dutch is used as
a case study, as part of the project Intelligence Amplification
for Cybercrime [20]. Reports are generated from a web form
containing various specific fields (e.g., names, addresses, bank
account numbers) and a free entry text field intended for a
description of the situation. All reports are in the domain
of internet fraud (e.g., an item is purchased online but not
delivered). The case study focuses on the automatic extraction
of residency relations from the description text, since this
is often relevant for a police investigation. Using manual
annotation by a single annotator, a gold standard set of 2975
relation occurrences has been collected. Annotations consist
of a part of a sentence containing a subject token, an object
token and all tokens in between (see Figure 1 for examples).
The Dutch dependency parser Frog [21] has been applied on
all documents to extract various linguistic features, including
dependency paths between relation elements. In Figure 2 and
Table I the list of features is shown, as applied to an example
phrase representing a residency relation. These features are
used to predict instances of residency relations in the corpus.
Note that the list of features includes both full Part-of-Speech
and main Part-of-Speech. The Frog parser uses the CGN tagset
[22] which defines ten main tags, e.g., noun, verb, pronoun,
and a large set of (mostly morphosyntactic) properties for
each tag, e.g., singular, diminutive, past tense. In the current
experiments the POS tags are used both with and without the
additional properties, as main POS and full POS, respectively.

V. DEVELOPMENT OF TRAINING DATA

The dataset in the case study contains a single relation
(i.e., residency), therefore explicit negative examples need to
be constructed. In order to create a representative training
set (i.e., to obtain a decision boundary in a trained model
which is close to the actual boundary of the positive class),
the negative examples need to be sufficiently similar to the
positive examples, while not being too similar to obscure the
decision boundary.

In the current experiments, two approaches for the construc-
tion of negative examples have been tested. In the first ap-
proach (N1) a training set is developed by pairing each positive
example with a random phrase for which the dependency path
has the same length as the positive example. Negative exam-
ples are extracted from a random document in the corpus, i.e.,
positive and negative examples are not semantically related.
Moreover, syntactically the only similarity between examples
is the length of the dependency path, without restrictions on
parts-of-speech or surface form. In Figure 3 a number of
generated candidates is shown for an example sentence.

In the second approach (N2) a heuristic is designed to
extract candidate relation instances from the corpus. This
heuristic defines a relation marker token, a restricted set of
chunk types for relation elements, and the size of a window
around the relation marker where relation elements can be
located (see Figure 3 for an example). The relation marker
tokens as well as the chunk types have been determined man-



ually1 based on analysis of the set of positive examples. This
heuristic produces a large number of candidates, of which, by
design, a large majority is not an actual relation instance. From
these candidates a training set is developed using all positive
examples from the manually annotated dataset that satisfy the
heuristic, and a random selection (of equal size) of negative
examples that satisfy the heuristic. Considering the sentence in
Figure 3, for example, the pair person-Amsterdam is included
in set N2 as a positive example, while one or more of the
other candidates (such as person-an or account number-other)
could be randomly selected as negative examples in set N2.
Because the heuristic is restrictive, 28% of actual, annotated
positive examples do not satisfy the criteria (e.g., when one of
the entities is part of a VP chunk) and are therefore excluded
from the training set in order to retain similarity between
positive and negative examples.

The currently used dataset contains manually annotated
positive examples, allowing for supervised machine learning.
Because of the presence of these annotations, there is no need
to generate positive examples automatically. However, note
that both methods for generating negative examples are also
capable of generating positive examples, either by randomly
extracting dependency sequences of length n (method N1) or
by applying a more restrictive heuristic (method N2). This
entails that these methods of generating training data, as well
as classifiers trained using this data, can be used to generate
and classify candidate pairs of relation entities in unseen
data without annotations. As noted in Section III, this task
definition differs from previous approaches using data from,
e.g., MUC or SemEval, that provide explicit candidate pairs for
both training and evaluation. Instead, the current methodology
is more similar to information retrieval tasks, where the goal is
to identify relevant units of information in a larger document
or corpus. In particular the approach using a linguistic heuristic
(N2) shows similarity to information retrieval, because the
heuristic restricts the set of candidates in such a way that also
a number of positive examples is excluded from the candidate
set. This shift in task definition, and the implications for the
current approach, will be discussed in Section VIII.

VI. BASELINE

A typical pattern for residency relations consists of the
sequence [person] lives in [location]. This pattern is used to
create a baseline classifier which is intended as an indication
of the added value of machine learning models for this task.
The baseline pattern is a sequence of the following elements:

1) A noun phrase (as determined by the parser)
2) 0–3 arbitrary tokens
3) Preposition in, from or at (Dutch: in, uit, te)
4) A location-like token, either starting with an upper case

letter or appearing on a list of Dutch location names2.

1Marker tokens are defined using a regular expression for the word live,
allowing for spelling variants as well as grammatical variants (verb, adjective,
adverb). See Section VIII for a discussion on the use of marker tokens.

2https://nl.wikipedia.org/wiki/Lijst van Nederlandse plaatsen

relation instance

main POS
sequence
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sequence
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Dense Rectified Linear Unit layers (3)

Sigmoid output layer

Fig. 4. LSTM network architecture.

sequence length 21 tokens
input data type integer (token indices)
vocabulary size
surface 4938
lemma 4151
embedding layer
vector length 512
mask zero true
LSTM layer
units 32
merge concatenate
auxiliary output
type dense
activation sigmoid
hidden layers
type dense
output units 64
activation rectified linear unit
number of layers 3
output layer
type dense
activation sigmoid
training
optimizer root mean square propagation
loss function binary cross entropy
all other parameters Keras defaults

TABLE II
PARAMETER VALUES USED FOR THE LSTM MODEL.

Note that the definition of a pattern-matching baseline is nec-
essarily arbitrary. However, the current baseline significantly
outperforms a fully random or fixed class assignment (which
would both produce an accuracy of 0.5 for a balanced two-
class dataset), indicating that this baseline indeed captures
a nontrivial amount of domain knowledge necessary for the
extraction of residency relations.

The baseline pattern could be extended to improve recall,
for example by extending the subject element to other chunk
types or by allowing tokens between the preposition and
the location element. However, such extensions would create
an increasingly non-trivial pattern. The goal of the current
baseline is to show that the problem of extracting residency
relations from text is in fact non-trivial, and therefore a
machine learning approach is appropriate for this problem.

https://nl.wikipedia.org/wiki/Lijst_van_Nederlandse_plaatsen


VII. EXPERIMENTAL EVALUATION

To test the performance of complex machine learning mod-
els on small amounts of data, a Long Short Term Memory
network (Section VII-A) as well as a Support Vector Machine
(Section VII-B) are evaluated on the crime report dataset.

A. Long Short Term Memory network

The performance of a Long Short Term Memory model
(LSTM) is tested in a series of experiments. Note that this
implementation is not intended as a benchmark evaluation of
the model or as modification of network architectures from
related work. Instead, the experiments serve as a proof-of-
concept implementation of the issues discussed in previous
sections, i.e., approaches to feature extraction, construction of
training examples and a baseline model for the application of
machine learning on a small user-generated dataset.

The network setup is similar to [12], using parallel LSTM
layers for each of the seven features (see Figure 4). The surface
and lemma features are converted to an embedding represen-
tation, while the other features are represented using one-hot
encoding. The LSTM classifier is trained using the Keras
framework with TensorFlow backend (see https://keras.io),
using parameter values as listed in Table II.

The results of training the LSTM network are listed in
Table III. Two separate models L1 and L2 have been trained
on datasets N1 and N2, respectively. For comparison, model
L1 is also tested using dataset N2, as well as model L2 using
dataset N1. The results show that the negative examples in set
N2 are more difficult to train than the example in set N1. This
is also indicated by cross-model performance.

In set N1 the negative examples have been randomly
selected from the corpus, with the length of the dependency
sequence as only constraint. As a consequence, in general the
negative examples are syntactically and semantically highly
different compared to the positive examples. These large
differences can be easily identified using a machine learning
algorithm, which is shown by the score of 0.99 for dataset
N1 in Table III. However, such a classifier is less capable
of classifying more realistic examples correctly, as shown by
the performance of classifier L1 on set N2. Therefore, dataset
N1 is considered non-representative for the relation extraction
task. On dataset N2 the LSTM model results in an accuracy
of 0.95 (as highlighted in Table III). The implications of this
issue will be discussed further in Section VIII.

Given the small amount of data and the high accuracy
scores, an analysis of the errors is difficult to generalize.
However, manual inspection of the errors has shown that
misclassified positive examples often contain a relatively more
complex syntactic structure, such as coordinating conjunc-
tions (and he lived in Amsterdam) or complex noun phrases
(the landlord of the apartment as advertised online lives in
London). Conversely, several misclassified negative examples
closely resemble a positive example (she is in Amsterdam)
or consist of a partial residency relation (the woman from
the advertisement lived). It is not always clear however why
a particular error is made. Increasing the sample size may

classifier dataset pos neg all
baseline N1 0.36 0.99 0.68
baseline N2 0.50 0.92 0.71
L1 N1 0.99 0.99 0.99
L2 N2 0.92 0.97 0.95
L1 N2 0.99 0.75 0.87
L2 N1 0.93 0.97 0.95

TABLE III
LSTM CLASSIFICATION ACCURACY USING 10-FOLD CROSS VALIDATION.

rank accuracy combination
1. 0.961133583 full POS, main POS, named entity,

chunk type, direction
2. 0.959109304 full POS, main POS, named entity,

chunk type
3. 0.952631573 full POS, main POS, chunk type, direction
4. 0.94777328 surface, lemma, full POS, main POS,

named entity, chunk type, direction
5. 0.944534425 full POS, main POS, named entity, direction
6. 0.943522279 surface, lemma, full POS, main POS,

chunk type, direction
7. 0.943117426 surface, lemma, full POS, main POS,

named entity, chunk type
8. 0.938259124 surface, lemma, full POS, main POS,

chunk type
9. 0.93684211 surface, lemma, full POS, named entity,

chunk type
10. 0.93663969 surface, lemma, full POS, named entity,

chunk type, direction
24. 0.920850203 full POS, main POS
63. 0.891902833 surface, lemma

108. 0.857894746 full POS
114. 0.851012152 surface
118. 0.838663973 main POS
119. 0.835222674 lemma
120. 0.831376525 full POS, named entity, direction
121. 0.812955458 chunk type
122. 0.810526303 named entity, direction
123. 0.78259109 main POS, named entity, direction
124. 0.781578948 main POS, chunk type, direction
125. 0.730364364 named entity
126. 0.727327936 direction
127. 0.721255062 named entity, chunk type, direction

TABLE IV
SELECTION OF ABLATION RESULTS.

improve this type of analysis, both by reducing the number of
accidental classification errors as well as by enabling a more
robust quantitative error analysis approach.

1) Feature ablation: As further analysis of the results an
ablation experiment has been performed with all combinations
of features (127 feature combinations in total for 7 features).
This experiment is performed using 10-fold cross-validation
on the L2, N2 setup, which is considered the most realistic
scenario. A selection of results is shown in Table IV.

The results show that the full POS feature is highly infor-
mative for relation classification. This feature is present in
the 10 highest scoring models (with accuracy values ranging
from 0.93–0.96), and it is also the feature that performs best in
isolation (accuracy 0.86). In contrast, the surface and lemma
features do not perform as well as expected. Even though these
features occur in the highest scoring models, they are generally
complemented with a POS feature (full POS, main POS, or

https://keras.io


both). In isolation these features result in lower accuracy
compared to the POS features, showing differences for the
single features (full POS 0.86, main POS 0.85, surface 0.85,
lemma 0.84) and when combined ({full POS, main POS} 0.92,
{surface, lemma} 0.89). A possible cause for this behavior is
the relative complexity of the surface and lemma features, with
a large vocabulary size and an embedding layer, as opposed
to the full POS feature (148 possible values) or the main POS
feature (14 possible values), both presented to the network in
one-hot encoding. Another possible cause is that vocabulary
items may be used in various configurations independent of
the presence of a relation, while the grammatical structure as
represented in a POS sequence is more directly correlated to
relation occurrences.

Less useful features include direction and chunk type, which
is as expected given the coarse-grained nature of these fea-
tures. The named entity feature can be useful, however this
is mostly observed in combination with other features. This
can be explained by the sparse nature of the named entity
feature, which indicates that the presence of the feature can be
informative, while the absence of the feature does not influence
the classification to a large degree.

Using all available features results in an accuracy of 0.95
(rank 4), which indicates that the full set of features is indeed
useful for the classification of relation instances.

B. Support Vector Machine

The LSTM model allows inputs to be presented to the
network as a sequence. This reduces the number of input
nodes required to represent sequence inputs, given that one
input can be used for the full sequence. In contrast, non-
recurrent models such as Support Vector Machines (SVMs)
need to process each element of an input sequence separately.
For longer sequences this leads to a very extensive input
layer, which means that both more parameters need to be
trained and the sparsity of the input increases. To address this
issue, the dimensionality of the input can be reduced during
preprocessing. For SVMs this can be achieved by defining
a custom kernel function that computes similarity between
input sequences (cf. [10]), reducing the dataset to a collection
of single-valued similarities between examples. In the current
experiments similarity is defined as the number of common
features for each pair of tokens for equal-length phrases,
and 0 otherwise (i.e., sim(A,B) =

∑
i

∑
f∈features Ai(f) =

Bi(f) if||A|| = ||B||, else 0).
The dependency kernel is non-normalized, i.e., ranging from

0 to L · F for path length L and number of features per
token F . As a consequence, the maximum score is higher
for longer paths, which may influence classification accu-
racy. Two normalization approaches have been tested, i.e.,
simexp(A,B) = 1− e−γsim(A,B) for various values of γ, and
simprop(A,B) = sim(A,B)

||A||·F . Note that simexp (see Figure 5)
effectively maps high similarity scores to 1 (i.e., path length
is not taken into account, as in the original kernel), whereas
simprop is a proportional scaling function.
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Fig. 5. Behavior of a SVM scaling function using various γ values.

classifier dataset pos neg all
baseline N1 0.36 0.99 0.68
baseline N2 0.50 0.92 0.71
S1 N1 0.95 0.95 0.95
S2 N2 0.89 0.89 0.89
S1 N2 0.99 0.52 0.76
S2 N1 0.85 0.93 0.89

TABLE V
SVM CLASSIFICATION ACCURACY USING 10-FOLD CROSS VALIDATION.

The results of the experiments are listed in Table V. As
for the LSTM model, the baseline is compared to a Support
Vector Machine S1 trained using dataset N1 and a second
SVM S2 trained using the dataset N2. Evaluation has been
performed both within and across datasets. Similar to the
LSTM results, the negative examples in set N2 are more
difficult to train (using the current dependency kernel). The
cross-model performance shows that the accuracy of model
S2 is similar on both sets, however model S1 is unable to
classify set N2 correctly (i.e., accuracy on negative examples
is at near chance level).

The influence of scaling for the SVM classifier is tested
using S2, N2. However, both exponential scaling and pro-
portional scaling result in lower accuracy compared to the
unscaled kernel.

VIII. DISCUSSION

The results show that the LSTM model outperforms the
SVM model in all combinations of training and test data.
This indicates that the LSTM model, while being relatively
complex, is still capable of generalizing over a small dataset.
The performance of the SVM could be influenced by the model
itself, however the dimensionality reduction method using a
distance kernel may also explain the difference with the LSTM
model. Furthermore, scaling functions for dependency path
comparisons are shown to negatively impact model accuracy.

Considering the training data, the results show that the
selection of negative examples has a large influence on model
performance. The examples in set N2 can be considered to
be more representative as relation candidates, therefore the



accuracy of the models using this dataset offer a more realistic
evaluation compared to the models trained on set N1.

The word embeddings are trained within the network, using
dependency token sequences as input. Alternatively, existing
embeddings for Dutch could have been used (e.g., [23]). How-
ever, pre-trained embeddings from a general domain are often
less useful for specific tasks (see, e.g., [24], [25], cf. also [12]
on which the design of the LSTM in this paper is based). Given
the current results the non-pretrained embeddings work well,
which was somewhat unexpected given the limited amount
of data (around 30k tokens in total). Further interpretation
of this conclusion should consider the results of the ablation
experiment (Section VII-A1), which shows that the embedding
features are outperformed by the POS features represented
with one-hot encoding. Nonetheless, the ablation results also
show that the embedding features trained on the current small
dataset do contribute positively to classification accuracy.

In the current research a heuristic is used to identify a
set of potential training and test examples, from which the
actual training and test data is sampled (see Section V). This
heuristic needs to be defined such that the resulting examples
are realistic potential candidates, without being too restrictive.
The precision of the heuristic is expected to be low (e.g., in
Figure 3 only one out of 20 candidates is a positive example),
but the generated negative examples should still somewhat
resemble the positive examples. More importantly, the recall of
the heuristic should be high, in order to include as many valid
positive examples as possible in the training and test data. This
balance is difficult to achieve, the heuristic used in the current
case study for example includes only 72% of the positive
examples in the annotated corpus. The task definition therefore
changes, from identifying all relation occurrences in a text
to identifying relation occurrences that satisfy the heuristic.
This can be a significant restriction, such as in the case of
the heuristic used in the current research, which is defined in
terms of a small set of relation marker tokens and grammatical
chunk categories. However, the practical and methodological
implications of this issue are not trivially clear, and need to
be investigated in more detail in further research.

To summarize the contributions of the current paper, the
methodological issues stated in Section I are addressed below.

1) Which task is addressed by a relation extraction ap-
proach? What are the prerequisites for this task?

Relation extraction can be defined as a classification task, i.e.,
to determine the type of relation between two given entities.
However, in many application scenarios the scope of the task
needs to be extended to include a retrieval aspect, i.e., given
a text, determine which tokens are candidate elements of a
semantic relation, and determine the type of relation once
the candidates have been identified. For this task definition a
methodology for generating candidates needs to be developed.
In the current paper two approaches have been investigated,
using various linguistically motivated criteria for selecting
relation candidates. In the current case study this approach
has been used to create negative examples for training a
classifier, which was necessary given that the annotated dataset

contains only a single type of relation. In case multiple types of
relations are available it is not necessary to construct negative
examples. However, in order to extend the task definition from
classification to retrieval, also in the case of multiple relation
types a candidate generation methodology is needed.

2) Are dependency tree features useful for relation extrac-
tion in noisy user-generated data?

Dependency tree features can be used successfully for this type
of data, even when performing strong dimension reduction.

a) Is the performance of state-of-the-art tools for
Dutch on this type of data sufficient to extract
features from data?

The statistical dependency parser Frog provides suf-
ficiently robust linguistic features for this type of
data. The parser acts as a filter on various errors in
user-generated text, e.g., incomplete sentences, meta-
characters introduced by copying fragments of e-mail
conversations or website content, spelling errors or
grammatical errors. This type of data does introduce
errors in sentence splitting, lemmatization, POS tagging,
dependency parsing, etc., however a statistical parser is
generally capable of producing a reasonable linguistic
analysis. Combined with the data generalization per-
formed by the classifier, this type of data does not
significantly impair classification accuracy. It should
be noted, however, that the phrases containing relation
examples are contain a relatively low amount of noise.
If an NLP task would be performed using different parts
of the text, then data quality may prove to be a more
problematic issue.

b) Which features are most useful for this task?
The ablation experiments show that Part-of-Speech fea-
tures are highly informative for the relation extraction
task. Vocabulary features (surface form and lemma)
contribute less to the overall task accuracy, however this
may be caused by the relatively small amount of training
data available for the embedding layers.

3) Which methods can be used for realistic negative sam-
pling of relation examples?

Using a heuristic that imposes linguistic constraints on con-
structed negative examples creates a more complex classifi-
cation problem, which is therefore more useful in practise.
However, the resulting accuracy score (0.95) still suggests that
the set of negative examples should be restricted further. An
undesired side effect of such a restriction may be, however,
that a larger number of actual positive examples will also be
excluded from training. Alternatively, the task of residency
relation extraction as defined in the case study might be
insufficiently complex itself. Related work on SemEval 2010
data (e.g., [12]) shows a maximum accuracy of around 0.85,
which suggests that the current task, while evidently non-
trivial, is indeed less complex than the task presented by
standard datasets. This hypothesis could be tested by adding
more relation types, which is left for future work due to the
additional annotation effort required.



4) What is a good baseline for this task?
The baseline defined in Section VI shows that the task cannot
be fully solved by a simple pattern matching approach. Ex-
tending the pattern could improve baseline accuracy, however
the boundary between an extended pattern and a full rule-based
classifier is not trivially clear.

5) How do standard machine learning algorithms behave
for a small amount of data?

Both the LSTM model and the SVM model perform well on
the relation extraction task. The LSTM model outperforms
the SVM model, however this may result from the dimension
reduction approach as applied in the design of the SVM.

a) Which architecture can be used for different ma-
chine learning methods?

For Long Short Term Memory networks, a separate
network layer for each feature type and a pooling
layer to combine the output of all feature layers is
shown to result in high accuracy scores, consistent with
results from previous research [12]. For a Support Vector
Machine, using a dependency path similarity kernel
results in sufficiently high accuracy scores, consistent
with [10]. However, the LSTM model outperforms the
SVM approach. Note that accuracy (i.e., number of
examples correctly classified relative to the total number
of examples) is used as an evaluation measure given that
the classification task is binary and the classes in the test
set are perfectly balanced. In future work the method
could be evaluated against all possible token pairs in
a given test document. In this case the test examples
would be highly imbalanced towards the negative class,
which means that precision and recall should be used as
evaluation measures instead of accuracy.

The results of the current research provide a first step in the
application of information extraction in the law enforcement
domain. Subsequent steps include annotation and classification
of additional relations (e.g., payment information or sending
and receiving goods) as well as semantically more complex
processing, e.g., the detection of a false identity from text,
i.e., whether the residency relation as extracted from the crime
report should be considered real. In future work these further
steps need to be investigated in more detail.
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